Responsive image
博碩士論文 etd-0905112-102218 詳細資訊
Title page for etd-0905112-102218
論文名稱
Title
低溫共燒陶瓷於平面微發電機之設計與製作
Design and fabrication of in-plane micro-generator using low temperature co-fire ceramics
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-31
繳交日期
Date of Submission
2012-09-05
關鍵字
Keywords
微發電機、LTCC、多極、多層、銣鐵硼
LTCC, multipolar, multilayer, Nd/Fe/B, micro-generator
統計
Statistics
本論文已被瀏覽 5758 次,被下載 530
The thesis/dissertation has been browsed 5758 times, has been downloaded 530 times.
中文摘要
本論文主要研究一平面旋轉電磁式微發電機之設計、製作、測試及應用,期能獲得高能量輸出。微發電機主要由兩部分組成,一為多層平面銀微線圈,另一部份是多極銣鐵硼硬磁。此研究提出一創新微線圈製程-低溫共燒陶瓷(Low temperature co-fired ceramics, LTCC)-來製作微發電機之線圈,LTCC微線圈製程技術比起LIGA (Lithographie Galvanoformung Abformung)、LIGA-like和繞線製程更節省成本及時間。研究使用有限元素分析法設計分析三種基本幾何形狀的微線圈分別是圓形、矩形及扇形,來獲得發電機之電磁資訊,並且建立此三種形狀微線圈之數學解析解,期能節省實驗時間與成本。經設計之尺寸將由LTCC製程製作微線圈,其線寬線徑均為100 μm,層數為兩層,搭配燒結製程所製作的銣鐵硼硬磁,外徑為9 mm,厚度為700 μm,所組成的發電機原型整體體積小於9×9×1 mm3,由自組裝驅動裝置驅動並進行量測,實驗結果顯示扇形線圈有最大發電量1.89 mW且在轉速為13,325 rpm時有感應電壓205.7 mV,實驗結果與模擬分析及解析解分析均有相同的趨勢,進而驗證模擬與數學分析的可行性。驗證LTCC製程製作微發電機之可行性後,設計製作一低轉速的平面旋轉電磁式能量擷取系統,期能應用於自行車發電系統上。此能量擷取系統由多層LTCC線圈、多極銣鐵硼硬磁,以及用來提升磁效能的軟鐵組成,並使用有限元素法搭配田口法設計能量擷取系統的最佳參數;LTCC線圈為10層與20層,線寬200 μm,線徑100 μm;硬磁為28極,外徑50 mm,厚度2 mm,磁場強度為1.4 Tesla;能量擷取系統原型總體積約為50×50×3 mm3 (20層線圈+硬磁+線圈與硬磁距離)。最後測試20層線圈在轉速為300rpm下感應電壓為1.539 V,且在外阻為740 Ω時,有0.788 mW 的發電量且其發電效率為26.62%;並實際接200顆LED((VF) <2.2 V、20 mA)在轉速為250 rpm時即可全部點亮,可應用於自行車光源上。
Abstract
This study focuses on the design, fabrication, test and application of in-plane rotary electromagnetic micro-generator to obtain a high power output. The micro-generator comprises multilayer planar low temperature co-fired ceramics (LTCC) Ag micro-coil and multipole hard magnet of Nd/Fe/B. Finite element simulations have been carried out to observe electromagnetic information. The study also establishes analytical solutions for the micro-generator to predict the induced voltage. Three different configurations of planar micro-coils investigated, which are sector-shaped, circle-shaped, and square-shaped micro-coils. A prototype of the micro-generator is as small as 9×9×1 mm3 in volume size. The experimental results show that the micro-generator with sector-shaped micro-coil has the highest power output of 1.89 mW, and the effective value of the induced voltage of 205.7 mV at 13,325 rpm is achieved. In application, this study designed and fabricated a planar rotary electromagnetic energy harvester with a low rotary speed for use in bicycle dynamos. Finite element analysis and the Taguchi method were used to design this dynamo system. LTCC technology was applied to fabricate Ag planar multilayer coils with 20 layers. A 28-pole magnet Nd/Fe/B with an outer diameter of 50 mm and a thickness of 2 mm was also sintered and magnetized. This harvester system was approximately 50×50×3 mm3 in volume. The experimentally induced voltages for 20-layer coils were 1.539 V at the rotary speeds of 300 rpm. The power output was 0.788 mW with an external resistance load of 740 Ω, and the efficiency was 26.62%. This harvester is capable of powering a minimum of 200 light emitted diodes (LEDs) (forward voltage (VF) <2.2 V and 20 mA) using a rotary speed of 250 rpm, and can be used for bicycle dynamo lighting.
目次 Table of Contents
中文摘要 I
Abstract II
Contents III
List of Figures V
List of Tables IX
Nomenclature X
Abbreviations XIII
Chapter 1 Introduction 1
1-1 Piezoelectric, thermoelectric and electrostatic generators 2
1-2 Micro-electromagnetic generators 3
1-2-1 Vibrational electromagnetic generators 3
1-2-2 Rotary electromagnetic generators 4
1-3 LTCC 8
1-4 Finite element simulation and analytical solutions 9
1-5 Motivation 10
1-6 Introduction of the dissertation 11
Chapter 2 Design, simulation and analytical theorem 13
2-1 LTCC micro-generator 13
2-2 Simulation 15
2-3 The analytical theorem of micro-generator electromagnetism 18
2-3-1 Simplification 20
2-3-2 Analysis of vector magnetic potential 22
2-4 The analytical solutions for power generation 23
Chapter 3 Fabrication 32
3-1 LTCC process 35
3-2 Magnet process 37
3-3 Measurement set up 38
Chapter 4 Results and discussions 40
4-1 Design 40
4-2 Analytical solutions 50
4-3 Fabrication 55
Chapter 5 Application 73
5-1 Design and analysis 73
5-2 Finite element analysis 74
5-2-1 One-factor-at-a-time method 79
5-2-2 Taguchi’s orthogonal arrays method 79
5-3 Fabrication 80
5-4 Results and discussion 84
5-4-1 One-factor-at-a-time method 84
5-4-2 Taguchi method 88
5-4-3 Fabrication 90
5-4-4 Comparison of measurement and simulation 94
Chapter 6 Conclusions 103
References 105
參考文獻 References
[1] D. C. R. Espinosa, A. M. Bernardes, J. A. S. Tenorio, “An overview on the current processes for the recycling of batteries,” Journal of Power Sources, Vol. 135, pp. 311-319, 2004.
[2] A. Hande, T. A. Stuart, “A selective equalizer for NiMH batteries,” Journal of Power Sources, Vol. 138, pp. 327-339, 2004.
[3] S. Yang, H. Knickle, “Design and analysis of aluminum/air battery system for electric vehicles,” Journal of Power Sources, Vol. 112, pp. 162-173, 2002.
[4] J. W. Fergus, “Recent developments in cathode materials for lithium ion batteries,” Journal of Power Sources, Vol. 195, pp. 939-954, 2010.
[5] A. M. Bernardes, D. C. R. Espinosa, J. A. S. Tenorio, “Recycling of batteries: a review of current processes and technologies,” Journal of Power Sources, Vol. 130, pp. 291-298, 2004.
[6] F. G. Jones, S. P. Beeby, N. M. White, “Towards a piezoelectric vibration-powered microgenerator,” IEE Proceedings-Science Measurement and Technology, Vol. 148, pp. 68-72, 2001.
[7] L. M. Swallow, J. K. Luo, E. Siores, I. Patel, D. Dodds, “A piezoelectric fibre composite based energy harvesting device for potential wearable applications,” Smart Materials and Structures, Vol. 17, pp. 1-7, 2008.
[8] H. B. Fang, J. Q. Liu, Z. Y. Xu, L. Donga, L. Wang, D. Chen, B. C. Cai, Y. Liu, “A MEMS-based piezoelectric power generator for low frequency vibration energy harvesting,” Chinese Physics Letter, Vol. 23, pp. 732-734, 2005.
[9] H. B. Fang, J. Q. Liu, Z. Y. Xu, L. Donga, L. Wang, D. Chen, B. C. Cai, Y. Liu, “Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting,” Microelectronics Journal, Vol. 37, pp. 1280-1284, 2006.
[10] D. M. Rowe, D. V. Morgan, J. H. Kiely, “Low cost miniature thermoelectric generator,” Electronics Letter, Vol. 27, pp. 2332-2334, 1991.
[11] C. A. Gould, N. Y. A. Shammas, S. Grainger, I. Taylor, “Thermoelectric technology: micro-electrical and power generation properties,” Proceedings of the 26th International Conference on Microelectronics, pp. 329-332, 2008.
[12] R. Tashiro, N. Katayama, Y. Ishizuka, F. Tsuboi, K. Tsuchiya, “Development of an electrostatic generator that harnesses the motion of a living body,” Journal of the Japan Society of Mechanical Engineers, Vol. C43, pp. 916-922, 2000.
[13] S. Meninger, J. O. M. Miranda, R. Amirtharajah, A. P. Chandrakasan, J. H. Lang, “Vibration-to-electric energy conversion,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 9, pp. 64-76, 2001.
[14] S. Roundy, P. K. Wright, K. S. Pister, “Micro electrostatic vibration to electricity converters,” ASME International Mechanical Engineering Congress and Congress and Exposition, pp.1-10, 2002.
[15] X. Wang, J. Shang, Z. Luo, L. Tang, X. Zhang, J. Li, “Reviews of power systems and environmental energy conversion for unmanned underwater vehicles,” Renewable and Sustainable Energy Reviews, Vol. 16, pp. 1958-1970, 2012.
[16] D. P. Arnold, “Review of microscale magnetic power generation,” IEEE Transactions on Magnetics, Vol. 43, pp. 3940-3951, 2007.
[17] S. Kulkarni, E. Koukharenko, R. Torah, J. Tudor, S. Beeby, T. O’Donnell, S. Roy, “Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator,” Sensors and Actuators A: Physical, Vol. 145-146, pp. 336-342, 2008.
[18] P. H. Wang, X. H. Dai, D. M. Fang, X. L. Zhao, “Design, fabrication and performance of a new vibration-based electromagnetic micro power generator,” Microelectronics Journal, Vol. 38, pp. 1175-1180, 2007.
[19] S. Kulkarni, S. Roy, T. O’Donnell, S. Beeby, J. Tudor, “Vibration based electromagnetic micropower generator on silicon,” Journal of Applied Physics, Vol. 99, pp. P511-1 - P511-3, 2006.
[20] I. Sari, T. Balkan, H. Kulah, “An electromagnetic micro power generator for wideband environmental vibrations,” Sensors and Actuators A: Physical, Vol. 145-146, pp. 405-413, 2008
[21] C. Serre , A. P. Rodr&#305;guez , N. Fondevilla ,E. Martincic , S. Mart&#305;nez , J. R. Morante , J. Montserrat, J. Esteve, “Design and implementation of mechanical resonators for optimized inertial electromagnetic microgenerators,” Microsystem Technologies, Vol. 14, pp. 653-658, 2008.
[22] C. Serre , A. P. Rodr&#305;guez ,N. Fondevilla , J. R. Morante ,J. Montserrat , J. Esteve, ”Vibrational energy scavenging with Si technology electromagnetic inertial microgenerators,” Microsystem Technologies, Vol. 13, pp. 1655-1661, 2007.
[23] S. P. Beeby, R. N. Torah, M. J. Tudor, P. G. Jones, T. O’Donnell, C. R. Saha, S. Roy, “A micro electromagnetic generator for vibration energy harvesting,” Journal of Micromechanics and Microengineering, Vol. 17, pp. 1257-1265, 2007.
[24] C. B. Williams, C. Shearwood, M. A. Harradine, P. H. Mellor, T. S. Birch, R. B. Yates, “Development of an electromagnetic micro-generator,” IEE Proceedings-Circuits, Devices and Systems, Vol. 148, pp. 337-342, 2001.
[25] P. C. Chen, H. Y. Lin, S. B. Chang, Y.-C. Huang, “The torque control of human power assisted electric bikes,” 2010 International Coriference on System Science and Engineering, pp.373-378, 2010.
[26] E. A. Lomonova, A. J. A. Vandenput, J. Rubacek, B. d'Herripon, G. Roovers, “Development of an improved electrically assisted bicycle,” IEEE Industry Applications Society 37th Annual Meeting, Vol. 1, pp. 384-389, 2002.
[27] C. Valerius, J. Krupar, W. Schwarz, “Electronic power management for bicycles,” European Conference on Power Electronics and Applications, pp.1-10, 2005.
[28] C. T. Pan, T. T. Wu, “Development of a rotary electromagnetic microgenerator,” Journal of Micromechanics and Microengineering, Vol. 17, pp.120-128, 2007.
[29] Y. J. Wang, C. D. Chen, C. K. Sung, “Design of a frequency-adjusting device for harvesting energy from a rotating wheel,” Sensors and Actuators A: Physical, Vol. 159, pp.196-203, 2010.
[30] D. P. Arnold, S. Das, J. W. Park, I. Zana, J. H. Lang, M. G. Allen, “Microfabricated high-speed axial-flux multiwatt permanent-magnet generators—part II: design, fabrication, and testing,” Journal of Microelectromechanical Systems, Vol. 15, pp. 1351-1363, 2006.
[31] A. Iizuka, M. Takato, M. Kaneko, T. Nishi, K. Saito, F. Uchikoba, “Millimeter scale MEMS air turbine generator by winding wire and multilayer magnetic ceramic circuit,” Modern Mechanical Engineering, Vol. 2, pp. 41-46, 2012.
[32] A. D. Liao, P. C. P. Chao, J. T. Chen, W. D. Chen, W. H. Hsu, C. W. Chiu, C. T. Lin, “A miniaturized electromagnetic generator with planar coils and its energy harvest circuit,” IEEE Transactions on Magnetics, Vol. 45, pp. 4621-4627, 2009.
[33] D. P. Arnold, F. Herrault, I. Zana, P. Galle, J. W. Park, S. Das, J. H. Lang, M. G. Allen, “Design optimization of an 8 W, microscale, axial-flux, permanent-magnet magneto,” Journal of Micromechanics and Microengineering, Vol. 16, S290-S296, 2006.
[34] H. Raisigel, O. Cugat, J. Delamare, O. Wiss, H. Rostaing, “Magnetic planar micro generator,” Transducers 2005. Solid-State Sensors, Actuators and Microsystems, pp. 757-761, 2005.
[35] H. Raisigel, O. Cugat, J. Delamare, “Permanent magnet planar micro-magnetos,” Sensors and Actuators A: Physical, Vol. 130-131, pp. 438-444, 2006.
[36] S. Das, D. P. Arnold, I. Zana, J.-W. Park, J. H. Lang, M. G. Allen, “Multi-watt electricpower from a microfabfucated permanent-magnet generator,” 18th IEEE International Conference on Micro Electro Mechanical Systems, pp. 287-290, 2005.
[37] D. P. Arnold, Y. H. Joung, I. Zana, J. W. Park, S. Das, J. H. Lang, D. Veazie, M. G. Allen , “High-speed characterization and mechanical modeling of microscale, axial-flux, permanent-magnet generators,” The 13th International Conference on Solid-Static Sensors, Actuators and Microsystems, pp. 701-704, 2005.
[38] A. S. Holmes, G. Hong, K. R. Pullen, “Axial-flux prmanent magnet machines for micropower generation,” Journal of Microelectromechanical Systems, Vol. 14, pp. 54-63, 2005.
[39] S. M. Hosseini, M. A. Mirsalim, M. Mirzaei, “Design, prototyping, and analysis of a low cost axial-flux coreless permanent-magnet generator,” IEEE Transactions on Magnetics, Vol. 44, pp.75-80, 2008.
[40] F. Herrault, C. H. Ji, R. H. Shafer, S. H. Kim, M. G. Allen, “Ultraminiaturized milliwatt-scale permanent magnet generators” The 14th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 899-902, 2007.
[41] C. Zwyssig, J. W. Kolar, “Design considerations and experimental results of a 100 W, 500, 000 rpm electrical generator,” Journal of Micromechanics and Microengineering, Vol.16, pp.297-302, 2006.
[42] F. Herrault , D. P. Arnold, I. Zana, P. Galle, M. G. Allen, “High temperature operation of multi-watt, axial-flux, permanent-magnet microgenerators,” Sensors and Actuators A: Physical, Vol. 148, pp.299-305, 2008.
[43] D. Krahenbuhl, C. Zwyssig, H. Weser, J. W. Kolar, “Theoretical and experimental results of a mesoscale electric power generation system from pressurized gas flow,” Journal of Micromechanics and Microengineering, Vol. 19, pp. 1-6, 2009.
[44] R. Cordero, A. Rivera, M. Neuman, R. Warrington, E. Romero, “Micro-rotational electromagnetic generator for high speed applictions,” Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference, pp. 1257-1260, 2012.
[45] J. Boland, Y. H. Chao, Y. Suzuki, Y. C. Tai, “Micro electret power generator,” Micro Electro Mechanical Systems, Vol.2, pp.538-541, 2003.
[46] C. T. Pan, T. T. Wu, “Simulation and fabrication of magnetic rotary microgenerator with multipolar Nd/Fe/B magnet,” Microelectronics Reliability, Vol.47, pp.2129-2134, 2007.
[47] A. H. Epstein, “Millimeter-scale, MEMS gas turbine engines,” Proceedings of ASME Turbo Expo 2003 International Joint Power Generation Conference, Atlanta, pp. 669-696, 2003.
[48] T. T. Toh, P. D. Mitcheson, A. S. Holmes, E. M. Yeatman, “A continuously rotating energy harvester with maximum power point tracking,” Journal of Micromechanics and Microengineering, Vol. 18, pp. , 2008.
[49] P. C. P. Chao, C. I. Shao, C. X. Lu, C. K. Sung, “A new energy harvest system with a hula-hoop transformer, micro-generator and interface energy-harvesting circuit,” Microsystems Technologies, Vol. 17, pp. 1025-1036, 2011.
[50] T. L. Willke, S. S. Gearhart, “LIGA micromachined planar transmission lines and filters,” IEEE Transactions on Advanced Packaging, Vol. 45, pp. 1681-1688, 1997.
[51] P. J. Cheng, S. C. Shen, C. T. Pan, C. Y Su, C. C. Hsieh, T. T. Wu, H. C. Liu, “In-plane Microgenerator with high energy product magnet,” Journal of the Chinese Society of Mechanical Engineers, Vol. 27, pp. 31-36, 2006.
[52] S. H. Wi, J. S. Kim, N. K. Kang, J. C. Kim, H. G. Yang, Y. S. Kim, “Package-level integrated LTCC antennafor RF package application,” IEEE Transactions on Advanced Packaging, Vol. 30, pp. 132-141, 2007.
[53] G. E. Ponchak, “The use of metal filled via holes for improving isolation in LTCC RF and wireless multichip packages,” IEEE Transactions on Advanced Packaging, Vol. 23, pp. 88-99, 2000.
[54] J. H. Jang, N. Ishitobi, B. C. Kim, S. G. Jeong, “Effects of microstructural defects in multilayer LTCC stripline,” IEEE Transactions on Advanced Packaging, Vol. 29, pp. 314-319, 2006.
[55] S. Sarkar, S. Pinel, N. Kidera, J. Laskar, “Analysis and application of 3-D LTCC directional filter design for multiband millimeter-wave integrated module,” IEEE Transactions on Advanced Packaging, Vol. 30, pp. 124-131, 2007.
[56] K. L. Zhang, S. K. Chou, S. S. Ang., “Development of a low-temperature co-fired ceramic solid propellant microthruster,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 944-952, 2005.
[57] L. J. Golonka, “Technology and applications of low temperature cofired ceramic (LTCC) based sensors and microsystems,” Bulletin of the Polish Academy of Sciences Technical Sciences, Vol. 54, pp.221-231, 2006.
[58] M. T. Sebastian, H. Jantunen, “Low loss dielectric materials for LTCC applications: a review,” International Materials Reviews, Vol. 53, pp. 57-90, 2008.
[59] A. E. Tager, J. Bray, L. Roy, “High-Q LTCC resonators for millimeter wave applications,” Microwave Symposium Digest, Vol.3, pp.2257-2260, 2003.
[60] T. Thelemann, H. Thust, M. Hintz, “Using LTCC for microsystems,” Microelectronics International, Vol.19, pp.19-23, 2002.
[61] C. T. Pan, Y. J. Chen, “Application of low temperature co-fire ceramics on in-plane micro-generator,” Sensors and Actuators A: Physical, Vol. 144, pp.144-153, 2008.
[62] F. Herrault, B. C. Yen, C.-H. Ji, Z. S. Spakovszky, J. H. Lang, M. G. Allen, “Fabrication and performance of silicon-embedded permanent-magnet microgenerators,” Journal of Microelectromechanical Systems, Vol. 19, pp. 4-13, 2010.
[63] T. O’Donnell, C. Saha, S. Beeby, J. Tudor, “Scaling effects for electromagnetic vibrational power generators,” Microsystems Technologies, Vol. 13, pp. 1637-1645, 2007.
[64] L. Mateu, C. Villavieja, F. Mol, “Physics-based time-domain model of a magnetic induction microgenerator,” IEEE Transactions on Magnetics, Vol. 43, pp. 992-1001, 2007.
[65] V. Sreedharan, D. Zhang, “Finite element modeling of cellular responses of gap junction connected osteocytes under extremely low-frequency electromagnetic fields,” Bioengineering Conference, pp.160-161, 2003.
[66] K. Smistrup, O. Hansen, H. Bruus, M. F. Hansen, “Magnetic separation in microfluidic systems using microfabricated electromagnets—experiments and simulations,” Journal of Magnetism and Magnetic Materials 293, pp. 597-604, 2005.
[67] C. T. Pan, Y. J. Chen, S. C. Shen, “Simulation and analysis of electromagnetic in-plane microgenerator,” Journal of Micro-Nanolithography MEMS and MOEMS, Vol. 8, pp. 031304-1-031304-8, 2009.
[68] I. Sari, T. Balkan, H. Kulah, “A micro power generator with planar coils on parylene cantilevers,” Prime - 2008 PhD Research in Microelectronics and Electronics, Proceedings, pp. 133-136, 2008.
[69] I. Sari, T. Balkan, H. Kulah, “An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency upconversion technique,” Journal of Microelectroelectromechanical Systems, Vol. 19, pp. 14-27, 2010.
[70] D. Zhu, S. Roberts, M. J. Tudor, S. P. Beeby, “Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator,” Sensors and Actuators A: Physical, Vol. 158, pp. 284-293, 2010.
[71] G. J. Lin, M. Chen, D. Song, “Research of micro-power generator based on the dielectric electro active polymer,” International Conference on Energy and Environment Technology, pp. 782-786, 2009.
[72] S. Das, D. P. Arnold, I. Zana, J. W. Park, M. G. Allen, and J. H. Lang, “Microfabricated high-speed axial-flux multiwatt permanent-magnet generators-part I: modeling,” Journal of Microelectromechanical Systems, Vol. 15, pp. 1330-1350, 2006.
[73] D. K. Cheng, A. Wesley, “Field and wave electromagnetics,” 2/e, 1989.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code