Responsive image
博碩士論文 etd-0905112-163059 詳細資訊
Title page for etd-0905112-163059
論文名稱
Title
鐵氟龍基材之微流體晶片低溫接合技術開發
Low Temperature Bonding Techniques for Sealing Teflon Based Microfluidic Devices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-19
繳交日期
Date of Submission
2012-09-05
關鍵字
Keywords
鐵氟龍表面改質、電漿、微流體晶片、鐵氟龍特性、低溫接合技術
plasma surface modification, Teflon, capillary electrophoresis, Teflon properties, low temperature bonding techniques
統計
Statistics
本論文已被瀏覽 5697 次,被下載 3292
The thesis/dissertation has been browsed 5697 times, has been downloaded 3292 times.
中文摘要
微流體晶片發展至今,已有許多如矽、玻璃、高分子、陶瓷等不同基材被應用於晶片製作。由於,高分子塑膠晶片具有熱可塑性、快速成型且容易接合等特性,因此以製程時間與設備成本考量而言,塑膠晶片最具有商品化的潛力。但除了鐵氟龍系、聚亞醯胺或聚烯類等的高分子聚合物外,常用之塑膠晶片並不耐有機溶液,接觸有機溶劑後容易有澎潤或是溶解的現象,因此會造成管道阻塞或改變表面特性等問題。因此,有研究以鐵氟龍作為基材製作微流體晶片,利用其優良之耐酸鹼與有機溶液之特性,以及鐵氟龍具有優良之生物相容性,作為可長時間操作之微流體晶片。然而,鐵氟龍具有高化學惰性之表面,其製程及封裝需要較高之接合操作溫度(>260oC),並不利於低溫封裝製程,而有所限制。
本研究開發一鐵氟龍基材之低溫封裝技術,利用自行開發之氨水氣體電漿,進行鐵氟龍基材之表面改質,以達到增加鐵氟龍基材之表面親水性與黏著性。研究結果顯示,鐵氟龍表面經氨水電漿以150 watt處理5分鐘後之水滴角由95o下降至45o,ESCA表面成分分析檢測顯示,以氨水電漿之去氟效果較佳,氟/碳原子比例由處理前之1.96降至約1.10,而在強度測試,施予15 kg/cm2壓力接合之試片強度顯示,電漿處理後接合強度約為未處理的2倍,且隨著接合溫度越高其接合強度越高,於260oC及15 kg/cm2之壓合條件下,鐵氟龍晶片之接合強度可接近0.3 MPa。此外,電漿處理並不會明顯改變鐵氟龍基材之表面粗糙度,量測結果顯示電漿處理僅增加15±5 nm之平均表面粗糙度(Ra),其對於一般之微流體應用影響不大。本研究所發展之製程技術與現今商業化上,使用化學藥劑的處理方式中,所會造成表面粗糙度大幅上升及產生惡臭有所不同,為一非常環保之技術。最後結合螢光光學架構與十字晶片,成功偵測與分離出ΦX-174之DNA樣品片段,証實鐵氟龍基材可作為微流體塑膠晶片之應用。
Abstract
Microfluidics emerged during the early 1990s with channel networks in silicon or glass. Microprocessing of these materials is labor-intensive and time-consuming, it requires sophisticated equipment in a clean room, and often involves hazardous chemicals. The subsequent use of polymer greatly simplified the fabrication of microchips and led to the rapid development of the field. Polymer such as poly(dimethylsiloxane) (PDMS), has other attractive properties, such as being elastic (easy to make efficient microvalves), permeable to gases, and compatible with culturing biological cells. Despite these advantages, applications of PDMS chips are severely limited by a few drawbacks that are inherent to this material: (i) strong adsorption of molecules, particularly large biomolecules, onto its surface; (ii) absorption of nonpolar and weakly polar molecules into PDMS bulk; (iii) leaching of
small molecules from PDMS bulk into solutions; and (iv) incompatibility with organic solvents. To overcome all these problems, Teflon plastics seem to be the perfect solution. They are well-known for their superior inertness to almost all chemicals and all solvents; they also show excellent resistance to molecular adsorption and molecule leaching from the polymer bulk to solutions. However, Teflon has a high chemical inertness of the surface, which is restricted the bonding temperature (>260°C).It is not conducive to the low-temperature packaging process.
This study presents a simple and rapid process for sealing Teflon-based microfluidic chip at a temperature of 140oC which is lower than typical bonding temperature of 260oC. A simple ammonium plasma treatment is used to enhance the surface energy of Teflon substrates such that the bonding temperature can be greatly reduced. Results indicate that the ammonium plasma treated Teflon substrates can be sealed using hot press bonding at a temperature of 140oC for 20 min. The measured
iv
bonding strength for the Teflon-based microfluidic devices is higher than those bonded at a reported temperature of 260oC for 60 min. It shows the measured contact angle for the Teflon substrates treated with different plasmas. Results indicated that the ammonium hydroxide plasma exhibited the best wettability property and the contact angle reached the minimum value of 45o after 5 min of treatment. The ESCA analysis showed the best Defluorination by ammonium plasma. The fluorine/carbon atomic ratio degraded from 1.96 to 1.10 by 5 minutes. The measured bonding strength for the Teflon substrates bonded with different surface activation protocols. Results showed that the bonding strength was enhanced upto 93% after the plasma treatment. The plasma treatment not only enhanced the bonding strength but also reduced the bonding temperature and time. The measured surface roughness only increased 15±5 nm (Ra) after the plasma treatment, which is acceptable for most applications in microfluidic systems. Finally, the fluorescence optical architecture and cross-chip successfully detected and isolated ΦX-174 fragment of DNA samples confirmed the Teflon substrate for the emerging microfluidic plastic chip. The developed method provides a simple and rapid way to fabricate Teflon-based microfluidic devices.
目次 Table of Contents
中文摘要........ ................................................................................................................. i
Abstract ..........................……………………………………………………………...iii
目錄….. .......................................................................................................................... v
圖目錄.. ........................................................................................................................vii
表目錄.. .......................................................................................................................... x
符號表.. ......................................................................................................................... xi
簡寫表.. ........................................................................................................................xii
第一章 緒論 .................................................................................................................. 1
1.1 前言 ................................................................................................................. 1
1.2 微流體晶片 ..................................................................................................... 2
1.3 研究動機與目的 ............................................................................................. 3
1.4 文獻回顧 ......................................................................................................... 6
1.5 論文架構 ....................................................................................................... 15
第二章 材料特性及原理介紹 .................................................................................... 17
2.1 鐵氟龍材料介紹 ........................................................................................... 17
2.2 電漿 ............................................................................................................... 20
2.2.1 電漿簡介 .................................................................................................... 20
2.2.2 輝光放電 (Glow Discharge) ..................................................................... 21
2.2.3 電漿的應用 ................................................................................................ 22
2.3 毛細管電泳 ................................................................................................... 23
2.3.1 毛細管電泳原理 ........................................................................................ 23
2.3.2 電泳現象 (Electrophoresis Phenomenon) ................................................ 24
2.3.3 電滲現象 (Electroosmosis Phenomenon) ................................................. 25
2.4 螢光的理論與應用 ....................................................................................... 29
第三章 實驗架構與方法 ............................................................................................ 32
3.1 玻璃母模製作 ............................................................................................... 32
3.2 熱壓鐵氟龍晶片與非典型溫度接合 ........................................................... 35
3.2.1 熱壓成型 .................................................................................................... 35
3.2.2 鐵氟龍表面電漿改質接合 ........................................................................ 36
3.3 光學系統架設與電泳測試 ........................................................................... 38
3.4 實驗儀器與藥品 ........................................................................................... 40
第四章 結果與討論 .................................................................................................... 42
4.1 接合鐵氟龍晶片與抗化學溶液測試 ........................................................... 42
4.2 接觸角量測 ................................................................................................... 45
4.3 表面粗糙度量測 ........................................................................................... 47
4.4 ESCA 表面成分分析 .................................................................................... 49
4.5 接合強度測試 ............................................................................................... 53
4.6 CE電泳晶片測試 ......................................................................................... 54
第五章 結論與未來展望 ............................................................................................ 63
5.1 結論 ............................................................................................................... 63
5.2 未來展望 ....................................................................................................... 64
自述….. ........................................................................................................................ 65
參考文獻 ...................................................................................................................... 66
參考文獻 References
[1] A. Manz, N. Graber, and H. M. Widmer, "Miniaturized Total Chemical-Analysis Systems - a Novel Concept for Chemical Sensing," Sensors and Actuators B-Chemical, vol. 1, pp. 244-248, 1990.
[2] T. Vilkner, D. Janasek, and A. Manz, "Micro total analysis systems. Recent developments," Analytical Chemistry, vol. 76, pp. 3373-3385, 2004.
[3] D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Analytical Chemistry, vol. 74, pp. 2623-2636, 2002.
[4] P. A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, "Micro total analysis systems. 2. Analytical standard operations and applications," Analytical Chemistry, vol. 74, pp. 2637-2652, 2002.
[5] D. J. Harrison, K. Fluri, K. Seiler, Z. H. Fan, C. S. Effenhauser, and A. Manz, "Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical-Analysis System on a Chip," Science, vol. 261, pp. 895-897, 1993.
[6] J. Rossier, F. Reymond, and P. E. Michel, "Polymer microfluidic chips for electrochemical and biochemical analyses," Electrophoresis, vol. 23, pp. 858-867, 2002.
[7] S. Y. Lai, X. Cao, and L. J. Lee, "A packaging technique for polymer microfluidic platforms," Analytical Chemistry, vol. 76, pp. 1175-1183, 2004.
[8] P. Abgrall and A. M. Gue, "Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem - a review," Journal of Micromechanics and Microengineering, vol. 17, pp. R15-R49, 2007.
[9] K. N. Ren, W. Dai, J. H. Zhou, J. Su, and H. K. Wu, "Whole-Teflon microfluidic chips," Proceedings of the National Academy of Sciences of the United States of America, vol. 108, pp. 8162-8166, 2011.
[10] J. Haneveld, H. Jansen, E. Berenschot, N. Tas, and M. Elwenspoek, "Wet anisotropic etching for fluidic 1D nanochannels," Journal of Micromechanics and Microengineering, vol. 13, pp. S62-S66, 2003.
[11] Z. H. Fan and D. J. Harrison, "Micromachining of Capillary Electrophoresis Injectors and Separators on Glass Chips and Evaluation of Flow at Capillary Intersections," Analytical Chemistry, vol. 66, pp. 177-184, 1994.
[12] C. S. Effenhauser, G. J. M. Bruin, A. Paulus, and M. Ehrat, "Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips," Analytical Chemistry, vol. 69, pp. 3451-3457, 1997.
[13] G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin,
67
"Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection," Sensors and Actuators B-Chemical, vol. 75, pp. 142-148, 2001.
[14] C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Lee, A. Puntambekar, and J. Y. Lee, "Disposable Smart lab on a chip for point-of-care clinical diagnostics," Proceedings of the Ieee, vol. 92, pp. 154-173, 2004.
[15] M. Stjernstrom and J. Roeraade, "Method for fabrication of microfluidic systems in glass," Journal of Micromechanics and Microengineering, vol. 8, pp. 33-38, 1998.
[16] A. Han, K. W. Oh, S. Bhansali, H. Thurman Henderson, and C. H. Ahn, "A low temperature biochemically compatible bonding technique using fluoropolymers for biochemical microfluidic systems," pp. 414-418, 2000.
[17] R. T. Kelly and A. T. Woolley, "Thermal bonding of polymeric capillary electrophoresis microdevices in water," Analytical Chemistry, vol. 75, pp. 1941-1945, 2003.
[18] Z. Chen, Y. Gao, J. Lin, R. Su, and Y. Xie, "Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template," Journal of Chromatography A, vol. 1038, pp. 239-245, 2004.
[19] Y. C. Su and L. Lin, "Localized plastic bonding for micro assembly, packaging and liquid encapsulation," pp. 50-53, 2001.
[20] J. Voldman, M. L. Gray, and M. A. Schmidt, "An integrated liquid mixer/valve," Microelectromechanical Systems, Journal of, vol. 9, pp. 295-302, 2000.
[21] A. Berthold, L. Nicola, P. Sarro, and M. Vellekoop, "Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers," Sensors and Actuators A: Physical, vol. 82, pp. 224-228, 2000.
[22] F. Niklaus, P. Enoksson, P. Griss, E. Kalvesten, and G. Stemme, "Low-temperature wafer-level transfer bonding," Microelectromechanical Systems, Journal of, vol. 10, pp. 525-531, 2001.
[23] T. Ito, K. Sobue, and S. Ohya, "Water glass bonding for micro-total analysis system," Sensors and Actuators B: Chemical, vol. 81, pp. 187-195, 2002.
[24] B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, "Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer," Microelectromechanical Systems, Journal of, vol. 9, pp. 76-81, 2000.
[25] S. Li and S. Chen, "Polydimethylsioxane fluidic interconnects for microfluidic systems," Advanced Packaging, IEEE Transactions on, vol. 26, pp. 242-247, 2003.
68
[26] R. Konrad, A. Griebel, W. Dorner, and H. Lowe, "Towards disposable lab-on-a-chip: Poly (methylmethacrylate) microchip electrophoresis device with electrochemical detection," Electrophoresis, vol. 23, pp. 596-601, 2002.
[27] H. Nakanishi, T. Nishimoto, R. Nakamura, A. Yotsumoto, T. Yoshida, and S. Shoji, "Studies on SiO-SiO bonding with hydrofluoric acid. Room temperature and low stress bonding technique for MEMS," Sensors and Actuators A: Physical, vol. 79, pp. 237-244, 2000.
[28] H. Becker and C. Gartner, "Polymer microfabrication methods for microfluidic analytical applications," Electrophoresis, vol. 21, pp. 12-26, 2000.
[29] M. Iwaki, "Ion surface treatments on organic materials," Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 175, pp. 368-374, 2001.
[30] Y. Zhang, A. C. H. Huan, K. L. Tan, and E. T. Kang, "Surface modification of poly(tetrafluoroethylene) films by low energy Ar+ ion-beam activation and UV-induced graft copolymerization," Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 168, pp. 29-39, 2000.
[31] V. Svorcik, I. Micek, V. Rybka, L. Palmetshofer, and V. Hnatowicz, "Ion beam ablation of polytetrafluoroethylene," Journal of Applied Polymer Science, vol. 69, pp. 1257-1261, 1998.
[32] J. C. Caro, U. Lappan, and K. Lunkwitz, "Sulfonation of fluoropolymers induced by electron beam irradiation," Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 151, pp. 181-185, 1999.
[33] T. Seguchi, "New trend of radiation application to polymer modification - irradiation in oxygen free atmosphere and at elevated temperature," Radiation Physics and Chemistry, vol. 57, pp. 367-371, 2000.
[34] A. Oshima, S. Ikeda, E. Katoh, and Y. Tabata, "Chemical structure and physical properties of radiation-induced crosslinking of polytetrafluoroethylene," Radiation Physics and Chemistry, vol. 62, pp. 39-45, 2001.
[35] K. Sato, S. Ikeda, M. Iida, A. Oshima, Y. Tabata, and M. Washio, "Study on poly-electrolyte membrane of crosslinked PTFE by radiation-grafting," Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 208, pp. 424-428, 2003.
[36] A. Oshima, T. Seguchi, and Y. Tabata, "ESR study on free radicals trapped in crosslinked polytetrafluoroethylene (PTFE) - II radical formation and
69
reactivity," Radiation Physics and Chemistry, vol. 55, pp. 61-71, 1999.
[37] A. Oshima, S. Ikeda, H. Kudoh, T. Seguchi, and Y. Tabata, "Temperature effects on radiation induced phenomena in polytetrafluoroetylene (PTFE)-change of G-value," Radiation Physics and Chemistry, vol. 50, pp. 611-615, 1997.
[38] T. Gumpenberger, J. Heitz, D. Bauerle, and T. C. Rosenmayer, "Modification of expanded polytetrafluoroethylene by UV irradiation in reactive and inert atmosphere," Applied Physics a-Materials Science & Processing, vol. 80, pp. 27-33, 2005.
[39] J. Heitz, H. Niino, and A. Yabe, "Chemical surface modification on polytetrafluoroethylene films by vacuum ultraviolet excimer lamp irradiation in ammonia gas atmosphere," Applied Physics Letters, vol. 68, pp. 2648-2650, 1996.
[40] C. Girardeaux, Y. Idrissi, J. J. Pireaux, and R. Caudano, "Etching and functionalization of a fluorocarbon polymer by UV laser treatment," Applied Surface Science, vol. 96-8, pp. 586-590, 1996.
[41] B. Hopp, Z. Geretovszky, I. Bertoti, and I. W. Boyd, "Comparative tensile strength study of the adhesion improvement of PTFE by UV photon assisted surface processing," Applied Surface Science, vol. 186, pp. 80-84, 2002.
[42] P. Chevallier, N. Castonguay, S. Turgeon, N. Dubrulle, D. Mantovani, P. H. McBreen, J. C. Wittmann, and G. Laroche, "Ammonia RF-plasma on PTFE surfaces: Chemical characterization of the species created on the surface by vapor-phase chemical derivatization," Journal of Physical Chemistry B, vol. 105, pp. 12490-12497, 2001.
[43] T. G. Vargo, J. A. Gardella, A. E. Meyer, and R. E. Baier, "Hydrogen Liquid Vapor Radio-Frequency Glow-Discharge Plasma Oxidation Hydrolysis of Expanded Poly(Tetrafluoroethylene)(Eptfe) and Poly(Vinylidene Fluoride)(Pvdf) Surfaces," Journal of Polymer Science Part a-Polymer Chemistry, vol. 29, pp. 555-570, 1991.
[44] D. J. Wilson, R. L. Williams, and R. C. Pond, "Plasma modification of PTFE surfaces Part I: Surfaces immediately following plasma treatment," Surface and Interface Analysis, vol. 31, pp. 385-396, 2001.
[45] S. Ishikawa, K. Yukimura, K. Matsunaga, and T. Maruyama, "The surface modification of poly(tetrafluoroethylene) film using dielectric barrier discharge of intermittent pulse voltage," Surface & Coatings Technology, vol. 130, pp. 52-56, 2000.
[46] H. Z. Liu, N. Y. Cui, N. M. D. Brown, and B. J. Meenan, "Effects of DBD plasma operating parameters on the polymer surface modification," Surface &
70
Coatings Technology, vol. 185, pp. 311-320, 2004.
[47] D. J. Hook, T. G. Vargo, J. A. Gardella, K. S. Litwiler, and F. V. Bright, "Silanization of Radio-Frequency Glow-Discharge Modified Expanded Poly(Tetrafluoroethylene) Using (Aminopropyl)Triethoxysilane," Langmuir, vol. 7, pp. 142-151, 1991.
[48] T. G. Vargo, P. M. Thompson, L. J. Gerenser, R. F. Valentini, P. Aebischer, D. J. Hook, and J. A. Gardella, "Monolayer Chemical Lithography and Characterization of Fluoropolymer Films," Langmuir, vol. 8, pp. 130-134, 1992.
[49] D. T. Clark and D. R. Hutton, "Surface Modification by Plasma Techniques .1. The Interactions of a Hydrogen Plasma with Fluoropolymer Surfaces," Journal of Polymer Science Part a-Polymer Chemistry, vol. 25, pp. 2643-2664, 1987.
[50] J. R. Chen and T. Wakida, "Studies on the surface free energy and surface structure of PTFE film treated with low temperature plasma," Journal of Applied Polymer Science, vol. 63, pp. 1733-1739, 1997.
[51] M. E. Ryan and J. P. S. Badyal, "Surface Texturing of Ptfe Film Using Nonequilibrium Plasmas," Macromolecules, vol. 28, pp. 1377-1382, 1995.
[52] U. Lappan, H. M. Buchhammer, and K. Lunkwitz, "Surface modification of poly(tetrafluoroethylene) by plasma pretreatment and adsorption of polyelectrolytes," Polymer, vol. 40, pp. 4087-4091, 1999.
[53] J. P. Badey, E. Espuche, D. Sage, B. Chabert, and Y. Jugnet, "A comparative study of the effects of ammonia and hydrogen plasma downstream treatment on the surface modification of polytetrafluoroethylene," Polymer, vol. 37, pp. 1377-1386, 1996.
[54] C. W. Lin, W. C. Hsu, and B. J. Hwang, "Investigation of wet chemical-treated poly(tetrafluoroethylene) surface and its metallization with SIMS, XPS and atomic force microscopy," Journal of Adhesion Science and Technology, vol. 14, pp. 1-14, 2000.
[55] N. Inagaki, S. Tasaka, K. Narushima, and K. Mochizuki, "Surface modification of tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) by remote hydrogen plasma and surface metallization with electroless plating of copper metal," Macromolecules, vol. 32, pp. 8566-8571, 1999.
[56] N. Inagaki, S. Tasaka, and T. Umehara, "Effects of surface modification by remote hydrogen plasma on adhesion in poly(tetrafluoroethylene)/copper composites," Journal of Applied Polymer Science, vol. 71, pp. 2191-2200, 1999.
[57] Y. W. Park, S. Tasaka, and N. Inagaki, "Surface modification of
71
tetrafluoroethylene-hexafluoropropylene (FEP) copolymer by remote H-2, N-2, O-2, and Ar plasmas," Journal of Applied Polymer Science, vol. 83, pp. 1258-1267, 2002.
[58] S. W. Lee, J. W. Hong, M. Y. Wye, J. H. Kim, H. J. Kang, and Y. S. Lee, "Surface modification and adhesion improvement of PTFE film by ion beam irradiation," Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 219, pp. 963-967, 2004.
[59] C. C. Perry, J. Torres, S. R. Carlo, and D. H. Fairbrothera, "Reactivity of Cu with poly(tetrafluoroethylene) and poly(vinyl chloride): Effect of pre- and post-metallization modification on the metal/polymer interface," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 20, pp. 1690-1698, 2002.
[60] C. M. Ng, H. P. Oei, S. Y. Wu, M. C. Zhang, E. T. Kang, and K. G. Neoh, "Surface modification of plasma-pretreated high density polyethylene films by graft copolymerization for adhesion improvement with evaporated copper," Polymer Engineering and Science, vol. 40, pp. 1047-1055, 2000.
[61] G. H. Yang, E. T. Kang, and K. G. Neoh, "Electroless deposition of copper and nickel on poly(tetrafluoroethylene) films modified by single and double surface graft copolymerization," Applied Surface Science, vol. 178, pp. 165-177, 2001.
[62] S. Y. Wu, E. T. Kang, K. G. Neoh, and K. L. Tan, "Surface modification of poly(tetrafluoroethylene) films by double graft copolymerization for adhesion improvement with evaporated copper," Polymer, vol. 40, pp. 6955-6964, 1999.
[63] X. P. Zou, E. T. Kang, K. G. Neoh, C. Q. Cui, and T. B. Lim, "Surface modification of poly(tetrafluoroethylene) films by plasma polymerization of glycidyl methacrylate for adhesion enhancement with evaporated copper," Polymer, vol. 42, pp. 6409-6418, 2001.
[64] G. H. Yang, E. T. Kang, K. G. Neoh, Y. Zhang, and K. L. Tan, "Surface graft copolymerization of poly(tetrafluoroethylene) films with N-containing vinyl monomers for the electroless plating of copper," Langmuir, vol. 17, pp. 211-218, 2001.
[65] Z. H. Ma, H. S. Han, K. L. Tan, E. T. Kang, and K. G. Neoh, "Surface graft copolymerization induced adhesion of polyaniline film to polytetrafluoroethylene film and copper foil.," European Polymer Journal, vol. 35, pp. 1279-1288, 1999.
[66] B. P. Dougherty and W. C. Thomas, "Thermophysical Property Measurements Using an Encapsulated Bead Thermistor - Applications to Liquids and Insulation Materials," Journal of Solar Energy Engineering-Transactions of
72
the Asme, vol. 114, pp. 23-31, 1992.
[67] P. R. Young and W. S. Slemp, "Space environmental effects on selected long duration exposure facility polymeric materials," Irradiation of Polymeric Materials, vol. 527, pp. 278-304, 1993.
[68] I. Langmuir, "The pure electron discharge and its applications in radio telegraphy and telephony," Proceedings of the Ieee, vol. 85, pp. 1496-1508, 1997.
[69] G. Y. Jung, T. H. Kim, and H. B. Lim, "Separation of morpholine, N-methylmorpholine and N-methylmorpholine-N-oxide by indirect UV absorption capillary electrophoresis," Analytical Sciences, vol. 12, pp. 367-370, 1996.
[70] J. Caslavska, E. Gassmann, and W. Thormann, "Modification of a Tunable Uv-Visible Capillary Electrophoresis Detector for Simultaneous Absorbency and Fluorescence Detection - Profiling of Body-Fluids for Drugs and Endogenous Compounds," Journal of Chromatography A, vol. 709, pp. 147-156, 1995.
[71] L. N. Amankwa, M. Albin, and W. G. Kuhr, "Fluorescence Detection in Capillary Electrophoresis," Trac-Trends in Analytical Chemistry, vol. 11, pp. 114-120, 1992.
[72] M. C. Roach, P. Gozel, and R. N. Zare, "Determination of Methotrexate and Its Major Metabolite, 7-Hydroxymethotrexate, Using Capillary Zone Electrophoresis and Laser-Induced Fluorescence Detection," Journal of Chromatography-Biomedical Applications, vol. 426, pp. 129-140, 1988.
[73] R. D. Smith, H. R. Udseth, J. A. Loo, B. W. Wright, and G. A. Ross, "Sample Introduction and Separation in Capillary Electrophoresis, and Combination with Mass-Spectrometric Detection," Talanta, vol. 36, pp. 161-169, 1989.
[74] J. A. Olivares, N. T. Nguyen, C. R. Yonker, and R. D. Smith, "Online Mass-Spectrometric Detection for Capillary Zone Electrophoresis," Analytical Chemistry, vol. 59, pp. 1230-1232, 1987.
[75] P. D. Curry, C. E. Engstromsilverman, and A. G. Ewing, "Electrochemical Detection for Capillary Electrophoresis," Electroanalysis, vol. 3, pp. 587-596, 1991.
[76] R. A. Wallingford and A. G. Ewing, "Capillary Zone Electrophoresis with Electrochemical Detection in 12.7-Mu-M Diameter Columns," Analytical Chemistry, vol. 60, pp. 1972-1975, 1988.
[77] R. A. Wallingford and A. G. Ewing, "Capillary Zone Electrophoresis with Electrochemical Detection," Analytical Chemistry, vol. 59, pp. 1762-1766, 1987.
73
[78] G. J. M. Bruin, "Recent developments in electrokinetically driven analysis on microfabricated devices," Electrophoresis, vol. 21, pp. 3931-3951, 2000.
[79] T. Kaneta, S. Tanaka, and H. Yoshida, "Improvement of Resolution in the Capillary Electrophoretic Separation of Catecholamines by Complex-Formation with Boric-Acid and Control of Electroosmosis with a Cationic Surfactant," Journal of Chromatography, vol. 538, pp. 385-391, 1991.
[80] C. S. Lee, D. Mcmanigill, C. T. Wu, and B. Patel, "Factors Affecting Direct Control of Electroosmosis Using an External Electric-Field in Capillary Electrophoresis," Analytical Chemistry, vol. 63, pp. 1519-1523, 1991.
[81] R. J. Hunter, "The Use of the Zeta-Potential in Characterizing Transport Processes in Colloidal Dispersions," Abstracts of Papers of the American Chemical Society, vol. 184, pp. 41-Coll, 1982.
[82] A. Sze, D. Erickson, L. Q. Ren, and D. Q. Li, "Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow," Journal of Colloid and Interface Science, vol. 261, pp. 402-410, 2003.
[83] W. T. Mason, Fluorescent and luminescent probes for biological activity: a practical guide to technology for quantitative real-time analysis: Academic Pr, 1999.
[84] P. Gozel, E. Gassmann, H. Michelsen, and R. N. Zare, "Electrokinetic Resolution of Amino-Acid Enantiomers with Copper(Ii) Aspartame Support Electrolyte," Analytical Chemistry, vol. 59, pp. 44-49, 1987.
[85] R. Holm and S. Storp, "Surface and interface analysis in polymer technology: A review," Surface and Interface Analysis, vol. 2, pp. 96-106, 1980.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code