Responsive image
博碩士論文 etd-0905116-164817 詳細資訊
Title page for etd-0905116-164817
論文名稱
Title
利用布拉格光柵設計SOI極化偏振器
Bragg grating based SOI polarization polarizer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-09-30
繳交日期
Date of Submission
2016-10-07
關鍵字
Keywords
布拉格光柵、極化分集系統、混合式電漿波導、極化偏振器、光波導
waveguide, Bragg grating, polarization diversity system, hybrid plasmonic waveguide, polarizer
統計
Statistics
本論文已被瀏覽 5649 次,被下載 271
The thesis/dissertation has been browsed 5649 times, has been downloaded 271 times.
中文摘要
SOI光波導因為有高折射率差的特性,因此對於光場具有較強的侷限效果,並被廣泛應用於積體化光學元件。然而高折射率差也會導致極化相關的問題,因而限制其光學元件的表現。若要解決此一問題,可以使用的方法為極化分集系統以及極化偏振器,而本論文使用極化偏振器來解決極化相關的問題。
在本研究中,我們使用混合式電漿波導加入布拉格光柵來設計極化偏振器,因為電漿波導中不同極化光有不同傳播路徑以及不同的布拉格光柵共振波長,因此可以達到較好的效果。我們首先提出混合式電漿波導所設計的水平極化偏振器,在經過結構優化後,頻寬可以達到0.38μm,並且在波長1.55μm下的消光比及插入損耗分別為26dB及0.22dB,而元件長度可縮小到約3μm。另外我們也提出倒置電漿波導所設計的水平極化偏振器,透過結構優化後,頻寬可以達到35nm,並且在波長1.55μm下的消光比及插入損耗分別為24.5dB及0.6dB,而元件長度約14μm。
除此之外,我們也提出混合式電漿波導所設計的垂直極化偏振器,在調整結構參數後,頻寬達到0.15μm,並且在波長1.55μm下的消光比及插入損耗分別為34.7dB及0.58dB,而元件長度為4.84μm。本論文成功利用混合式電漿波導設計極化偏振器,相較於其它水平極化偏振器,我們所優化的水平極化偏振器具有頻寬較大且損耗較小的特性,而垂直極化偏振器的消光比與其他垂直極化偏振器相比也較大。
Abstract
Silicon on Insulator (SOI) waveguides can confine light in a small region due to their high index contrast and have been widely used in integrated optics. However, high index contrast also leads to strong polarization dependence, which will limit the device performance. To overcome this drawback, polarization diversity systems and polarization polarizers have been proposed. In this thesis, we investigate polarization polarizers to solve the problem.
We utilize hybrid plasmonic waveguides and Bragg gratings to design polarization polarizers. Owing to polarized light has different paths and Bragg wavelengths, better performance can be achieved. We optimize a TE polarizer based on hybrid plasmonic waveguides. The optimized design shows that the bandwidth and device length are 0.38μm and 3μm, respectively. The extinction ratio and insertion loss can be improved to be 26dB and 0.22dB, respectively, at 1.55μm wavelength. Besides, we have proposed TE polarizer based on inverted hybrid plasmonic waveguide. The optimized design possesses the bandwidth of 35nm with the device length is 14μm. The extinction ratio and insertion loss are 24.5dB and 0.6dB, respectively, at 1.55μm wavelength.
We have also proposed a TM polarizer based on hybrid plasmonic waveguides. The simulation results indicate that the optimized bandwidth and device length is 0.15μm and 4.84μm, respectively. At 1.55μm wavelength, the extinction ratio and insertion loss are 34.7dB and 0.58dB, respectively. Our optimized TE polarizer has larger bandwidth and lower insertion loss than other TE polarizers. The proposed TM polarizer shows larger extinction ratio than other TM polarizers.
目次 Table of Contents
致謝....................................................................................................................................i
中文摘要...........................................................................................................................ii
英文摘要..........................................................................................................................iii
目錄..................................................................................................................................iv
圖目錄..............................................................................................................................vi
表目錄...............................................................................................................................x
第 一 章 緒論...............................................................................................................1
1.1 SOI光波導.........................................................................................................1
1.2極化分集系統....................................................................................................2
1.3極化偏振器........................................................................................................5
1.4研究動機............................................................................................................9
第 二 章 混合式表面電漿波導元件...........................................................................10
2.1表面電漿波共振模態.......................................................................................10
2.2表面電漿波激發方法.......................................................................................18
2.3混合式表面電漿波導元件...............................................................................21
第 三 章 水平極化布拉格光柵極化偏振器數值分析...............................................27
3.1布拉格光柵極化偏振器...................................................................................27
3.2水平極化布拉格光柵極化偏振器特性分析...................................................29
3.3製程容忍度.......................................................................................................35
第 四 章 倒置電漿波導所構成的水平極化通過布拉格光柵極化偏振器數值分
析.......................................................................................................................38
4.1 倒置電漿波導所構成極化偏振器.................................................................38
4.2 製程容忍度......................................................................................................45
第 五 章 垂直極化布拉格光柵極化偏振器數值分析...............................................47
5.1垂直極化布拉格光柵極化偏振器...................................................................47
5.2垂直極化布拉格光柵極化偏振器數值分析...................................................49
5.3製程容忍度.......................................................................................................54
第 六 章 結論...............................................................................................................56
參考文獻.........................................................................................................................58
參考文獻 References
[1] S. E. Miller, “Integrated optics: an introduction,” Bell Syst. Tech. J., vol. 48, pp. 2059-2068, 1969.
[2] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron., vol. 27, pp. 242-246, 2008.
[3] T. Barwicz, M. R. Watts, M. A. Popovic , P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith. “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics, vol. 1, pp.57-60, 2006.
[4] Z. Ying, G. Wang, X. Zhang, H. Ho, and Y. Huang, “Ultracompact and broadband polarization beam splitter based on polarization-dependent critical guiding condition,” Opt. Lett., vol. 40, pp. 2134-2137, 2015.
[5] J. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon-waveguide-based mode evolution,” IEEE J. Sel. Top. Quantum Electron., vol. 16, pp. 53-60, 2010.
[6] S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform, ” IEEE Photon. Technol. Lett., vol. 26, pp. 1633-1636, 2014.
[7] X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, and D. Dai, “Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide,” Opt. Express, vol. 39, pp. 4514-4517, 2014.
[8] Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J. B. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM Polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett., vol. 20, pp. 641-643, 2008.
[9] W. Jiang and X. Sun, “TE-pass polarizer with cylinder array inserted in buffer layer of silica-on-silicon Waveguide,” IEEE Photon. Technol. Lett., vol. 26, pp. 937-940, 2014.
[10] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Pro. Phy. Soc. London, vol. 18, pp. 269-275, 1902.
[11] U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces,” J. Opt. Soc. Am., vol. 31, pp. 213-222, 1965.
[12] E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch, vol. A 23, pp. 2135-2136, 1968.
[13] E. K. Akowuah, T. Gorman, and S. Haxha, “Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration,” Opt. Express, vol. 17, pp. 23511-23521, 2009.
[14] A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” App. Phys. Lett., vol. 75, pp. 1515-1517, 1999.
[15] J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical and Bioanalytical Chemistry, vol. 377, pp. 528-539, 2003.
[16] A. Partovi and D. Peale, “A low-cost, high-efficiency solar cell based on dye-sensitized,” Nature, vol. 353, pp. 737-740, 1991.
[17] M. Moskovits, “Surface-enhanced spectroscopy,” Modern Physics, vol. 57, pp. 783-825, 1985.
[18] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, pp. 824-830, 2003.
[19] J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons:an introduction,” Contemp. Phys., vol. 32, pp. 173-183, 1991.
[20] V. M. Shalaev, W. C. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev,“Negative index of refraction in optical metamaterials, ” Opt. Lett., vol. 30, pp. 3356-3358, 2005.
[21] R. F. Wallis and G. I. Stegeman, Electromagnetic surface excitations. Springer-Verlag, New York, 1985.
[22] R. L. Olmon and M. B. Raschke, “Corrigendum: Antenna–load interactions at optical frequencies: impedance matching to quantum systems,” nanotechnology, vol. 23, pp. 1-28, 2013.
[23] K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating coupled surface plasmon resonance,” Opt. Express, vol. 16, pp. 9781-9789, 2008.
[24] J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Elsevier Science, vol. 54, pp. 16-24, 1999.
[25] R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nature Photon., vol. 2, pp. 496-500, 2008.
[26] D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express, vol. 17, pp. 16646-16653, 2009.
[27] X. Guan, H. Wu, Y. Shi, L. Wosinski, and D. Dai, “Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,” Opt. Lett., vol. 38, pp. 3005-3008, Aug 15 2013.
[28] M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” IEEE Photon. J., vol. 4, pp. 707-714, 2012.
[29] M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett., vol. 37, pp. 55-57, 2012.
[30] Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett., vol. 27, pp. 201-204, 2015.
[31] X. Guan, P. Xu, Y. Shi and D. Dai, “Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating, ” Asia Communications and Photonics Conference, China, 2013.
[32] J. Zhang, E. Cassan, and X. Zhang, “Wideband and compact TE-pass/TM-stop polarizer based on a hybrid plasmonic bragg grating for silicon photonics, ” J. Lightwave Technol., vol. 32, pp. 1383-1386, 2014.
[33] P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. App. Phys., vol. 86, pp. 1781-1784, 1999.
[34] M. S. Kwon, J. S. Shin, S. Y. Shin, and W. G. Lee, “Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal,” Opt. Express, vol. 20, pp. 21875-21887, 2012.
[35] T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol., vol. 15, pp. 1277-1294, 1997.
[36] J. Wang, S. Schablitsky, Z. Yu, W. Wu, and S. Y. Choua, “Fabrication of a new broadband waveguide polarizer with a double-layer 190 nm period metal-gratings using nanoimprint lithography,” J. Vac. Sci. Technol, vol. 17, pp. 2957-2960, 1999.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code