Responsive image
博碩士論文 etd-0906105-165129 詳細資訊
Title page for etd-0906105-165129
論文名稱
Title
具有背壓控制之液壓鼓脹成形之自適性模擬
Adaptive simulation of the hydraulic bulging forming with counter pressure control
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-12
繳交日期
Date of Submission
2005-09-06
關鍵字
Keywords
有限元素模擬、自適性模擬、管材液壓成形
Tube hydro-forming, Adaptive simulation, Finite element analysis
統計
Statistics
本論文已被瀏覽 5673 次,被下載 1756
The thesis/dissertation has been browsed 5673 times, has been downloaded 1756 times.
中文摘要
管材液壓成形技術已廣泛地被應用於工業上各零組件之製造。在成形過程中負載路徑,即內壓力、軸向進給量與背向進給對時間之關係,對於成形的結果有決定性的影響。而有限元素模擬常被用來模擬不同負載路徑下之成形結果,以降低實際試模所需的花費。本文以具有背向進給之T形與Y形管件液壓成形為對象,以有限元素軟體LS-DYNA 3D結合控制副程式來進行自適性模擬。由本文之多階段控制方式所獲得之管厚分佈較直線控制獲得之厚度分佈來得均勻。由解析值與實驗值之比較,證實此法之可用性。
Abstract
The tube hydro-forming (THF) is an innovative manufacturing process which is used to manufacture many industrial components widely. The success of THF is largely dependent on the selection of the loading paths: internal pressure versus time, axial feeding versus time and counter punch (CP) versus time. The finite element analysis is used to simulate the forming result of different loading paths and reduce the cost of die-testing. This paper presents the forming of T-branches and T-branches components with CP. These paper has developed an adaptive simulation algorithm by combining FEM code LS-DYNA 3D with controller subroutine to get ideal bulging height and uniform thickness of the formed tube with multi-stages. Discuss influence under different parameters of process. The results are compared with experimental results to validate accuracy by this adaptive control methods.
目次 Table of Contents
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XI
符號說明 XII
第一章 緒論 1
1-1 前言 1
1-2 管材液壓成形技術簡介 2
1-3 文獻回顧 3
1-4研究動機與目的 6
1-5論文架構 6
第二章 有限元素模擬簡介 10
2-2 基礎理論 10
2-2-1 Implicit Method & Explicit Method 10
2-2-2 Hughes-Liu Shell 12
2-2-3中心差分法(Central Difference Method) 16
2-2-4 時間步驟(Time Step) 16
2-3 模擬基本架構 17
2-4 幾何模型建立 18
2-5 前處理 21
2-5-1 假設條件 21
2-5-2 網格分割 22
2-5-3 材料性質 24
2-5-4 邊界條件 24
2-6 控制程式架構 26
2-6-1 I/O模組 27
2-6-2運算模組 28
2-6-3 連接器 28
2-6-4 重啟動(restart) 29
第三章 自適性控制策略 33
3-1 前言 33
3-2 皺褶偵測與控制 33
3-3 薄化偵測與控制 34
3-4 接觸長度偵測與控制 34
3-5 控制流程 35
3-5-1 T形鼓脹進給(自由鼓脹)之控制策略 35
3-5-2 T形鼓脹進給(含背向力)之控制策略 36
3-5-3 Y形鼓脹進給(含背向力)之控制策略 40
第四章 模擬結果與討論 52
4-1 前言 52
4-2 T形鼓脹進給(自由鼓脹)分析結果 52
4-2-1 初始厚度對成形結果之影響 52
4-2-2摩擦力與成形之關係 53
4-2-3 結果與討論 53
4-3 T形鼓脹進給(背向進給)分析結果 54
4-3-1 初始厚度對成形結果之影響 54
4-3-2 摩擦力與成形結果之關係 55
4-3-3 自由鼓脹與具有背向進給之比較 56
4-3-4 薄化率與成形高度對負載路徑之影響 57
4-3-5 結果與討論 58
4-4 Y形鼓脹進給(背向進給)分析結果 59
第五章 液壓成形實驗 82
5-1 實驗目的 82
5-2 實驗設備 82
5-3 實驗結果 82
5-3-1 解析例與實驗值之比較 83
第六章 結論 92
6-1 研究成果之概要 92
6-2 今後研究之課題 92
參考文獻 94
附錄A 使用軟體介紹 98
附錄B 交叉模與平面模之規範 101
附錄C LS-DYNA關鍵檔 106
附錄D LS-DYNA體積不變之證明 111
參考文獻 References
[1] 邱先拿, “管材液壓成形技術之應用狀況與發展動向”, 機械月刊, Vol.26 , No.10, pp.369-383 (2000).
[2] F. Dohmann and C. Hartl, “Tube hydroforming-a method to manufacture lightweight parts”, Journal of Materials Processing Technology, Vol.60, pp.669-676 (1996).
[3] F. Dohmann and C. Hartl, “Tube hydroforming-research and practical application”, Journal of Materials Processing Technology, Vol.71, pp.174-185 (1997).
[4] M. Koc and T. Altan, “An overall review of the hydroforming (THF) technology”, Journal of Materials Processing Technology, Vol.108, pp.384-393 (2001).
[5] 李明富, 莊志宇, 鄭炳國, 黃建成, “管件液壓成形技術之應用與開發現況”, 鍛造, Vol.13-4, pp.45-49 (2004).
[6] N. Asnafi, “Analytical modeling of tube hydroforming”, Thin-Walled Structures, Vol.34, pp.295-330 (1999).
[7] N. Asnafi and A. Skogsgardh, “Theoretical and experimental analysis of stroke-controlled tube hydroforming”, Journal of Material Science and Engineering, A.279, p.95-110 (2000).
[8] S. Kim and Y. Kim, “Analytical study for tube hydroforming”, Journal of Materials Processing Technology, Vol.128, pp.232-239 (2002).
[9] M. Koc and T. Altan, “Prediction of forming limits and parameters in the tube hydroforming process”, International Journal of Machine Tools and Manufacture, Vol.42, pp.123-138 (2002).
[10] G. Nefussi and A. Combescure, “Coupled buckling and plastic instability for tube hydroforming”, International Journal of Mechanical Sciences, Vol.44, pp.899-914 (2002).
[11] 范光堯, 蘇嵐, “T形管液壓成形之有限元素分析”, 中國機械工程學會第十七屆全國學術研討會, pp.103-107 (2000).
[12] B.J. Mac Donald and M.S.J. Hashmi, “Finite element simulation of bulge forming of across-joint from a tubular blank”, Journal of Materials Processing Technology 103, pp.333-342 (2000).
[13] B.J. Mac Donald and M.S.J. Hashmi, “Three-dimensional finite element simulation of bulge forming using a solid bulging medium”, Finite Elements in Analysis and Design 37, pp.107-116 (2001).
[14] N. Jain, J. Wang and R. Alexander, “Finite element analysis of dual hydroforming processes”, Journal of Materials Processing Technology 145, pp.59-65 (2004).
[15] 黃建成, 莊志宇, 李明富, 鄭炳國, “管件液壓成形製程模擬技術探討-以T型管為例”, 鍛造, Vol.13-2, pp.27-32 (2004).
[16] M. Koc and T. Altan, “Application of two dimensional (2D) FEA for the tube hydroforming process”, International Journal of Machine Tools & Manufacture 42, pp. 1285-1295 (2002).
[17] L.P. Lei, D.H. Kima, S.J. Kangb, S.M. Hwanga and B.S. Kang, “Analysis and design of hydroforming processes by the rigid–plastic finite element method”, Journal of Materials Processing Technology 114, pp. 201-206 (2001).
[18] Y. Aue-U-Lan, G. Ngaile and T. Altan, “Optimizing tube hydroforming using process simulation and experimental verification”, Journal of Materials Processing Technology 146, pp.137-143 (2004).
[19] M. Strano, S. Jirathearanat and T. Altan,“Adaptive FEM Simulation for Tube Hydroforming : a Geometry-Based Approach for Wrinkle Detection”, Annals of the CIRP, Vol.50, pp.185-190 (2001).
[20] 真鍋健一, 小山寬, 宮本俊介, “ХшみйгユЭ①иルみт⑦ヲк①ЙЗソиャЖュ適應制御”, 平成14年度塑性加工春季講演會, pp.259-260 (2002).
[21] 末武正充, 宮本俊介, 谷上哲也, 真鍋健一, 小山寬, 楊明, “知的制御ХшみйгユЭ①иルみт⑦ヲЁЗЪуソ試作”, 第54回塑性加工聯合講演會, pp.333-334 (2003).
[22] P. Ray and B.J. Mac Donald, “Determination of the optimal load path for tube hydroforming processes using a fuzzy load control algorithm and finite element analysis”, Finite Element in Analysis and Design 41, pp.173-192 (2004).
[23] “LS-DYNA THEORETICAL MANUAL”, Livermore Software Technology Corporation (1998).
[24] 趙海鷗, “LS-DYNA動力分析指南”, 兵器工業出版社 (2003).
[25] J.S. Sun, K.H. Lee and H.P. Lee, “Comparison of implicit and explicit finite element methods for dynamic problems”, Journal of Materials Processing Technology 105, pp.110-118 (2000).
[26] 吳宏振,“T形管件液壓成形之自適性模擬”, 國立中山大學機電工程研究所碩士論文 (2003).
[27] 黃力上,“管件液壓成形時摩擦係數量測之研究”, 國立中山大學機電工程研究所碩士論文 (2004).
[28] F.P. Beer and E.R. Johnston,“MECHANICS OF MATERIALS(2nd ed.)”, USA, McGRran-Hill (1992).
[29] 林瑞彰,“管材液壓成形之管材成形極限之研究”, 國立中山大學機電工程研究所碩士論文 (2003).
[30] Y.M Hwang, Y.K. Lin and C.Y. Chuang,“Experiment of Tube Bulging Forming and Determination of the Flow Stress of Tubular Materials”, Journal of Chinese Society of Forging, Vol. 12, No. 4, pp.6-13 (2003)
[31] S. Jirathearanat, C. Hartl and T. Altan,“Hydroforming of Y-shapes-product and process design using FEA simulation and experiments”, Journal of Materials Processing Technology 146, pp.124-129 (2004).
[32] 王之佑,“管件液壓成形試驗機之設計與製作”, 國立中山大學機電工程研究所碩士論文 (2003).
[33] 林子權,“三通管件液壓成形試驗機之試作與成形實驗”, 國立中山大學機電工程研究所碩士論文 (2005).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code