Responsive image
博碩士論文 etd-0906105-173043 詳細資訊
Title page for etd-0906105-173043
論文名稱
Title
活性碳纖維塗覆二氧化鈦光觸媒去除揮發性有機物之可行性研究
Feasibility study of photocatalysis on the volatile organic compounds using TiO2 coated activated carbon fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
149
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-02
繳交日期
Date of Submission
2005-09-06
關鍵字
Keywords
丙酮、溶膠凝膠法、活性碳纖維、二氧化鈦光觸媒、光催化氧化
activated carbon fiber, acetone, titania
統計
Statistics
本論文已被瀏覽 5724 次,被下載 3992
The thesis/dissertation has been browsed 5724 times, has been downloaded 3992 times.
中文摘要
本研究旨在將光催化分解技術與活性碳吸附技術結合,利用活性碳富集氣相污染物之特性,快速將氣相污染物吸附、濃縮,再利用光催化分解技術更有效率的將氣相污染物予以分解。
本研究將TiO2以溶膠凝膠法塗覆於活性碳纖維,並採用批次式光催化氧化反應系統進行吸附反應和光催化反應,實驗探討之操作參數包括丙酮初始濃度(13.6 μM、27.2 μM)、反應溫度(45℃~90℃)、氧濃度(0.5~20%)及水氣含量(0~244.9 μM)光催化反應器上方置放三支15W近紫外光燈管為光源,內部則放置披覆TiO2薄膜之活性碳纖維載體,丙酮則以氣密式注射針筒(gasket syringe)置入,進行光催化氧化反應實驗。反應物及產物分析分別係以氣相層析儀/電子捕捉偵測器、氣相層析儀/火燄離子偵測器配合甲烷轉換器偵測並定量之。
由光觸媒篩選之結果得知,本研究所採用之商業型TiO2(Degussa P-25)、NO3-/TiO2、SO42-/TiO2等三種光觸媒中,以SO42-/TiO2光觸媒之光氧化活性最佳;而載體比對實驗則發現光觸媒結合活性碳纖維後,大幅降低反應器內丙酮濃度和光催化反應時間,產物以CO2和CO為主,礦化率高達95%以上。操作參數實驗結果顯示,提高丙酮初始濃度,有利於活性碳纖維(ACF)吸附丙酮,但對於丙酮之反應速率影響不大。提高反應溫度,雖不利於ACF之吸附,但整體而言有助於丙酮之光催化分解速率,對產物CO2和CO之生成和礦化率皆有幫助。氧氣的添加對分解丙酮之影響不大,當氧氣濃度小於1%時,產物CO2和CO之生成僅有較顯著之降低。水氣的添加會略為降低活性碳纖維吸附丙酮之能力,然而對丙酮之光催化分解效率之影響不大。本研究結果顯示以TiO2/ACF光催化分解丙酮可大幅提高氣相丙酮之質傳速率。
Abstract
This study combined photocatalytic technology with activated carbon adsorption to decompose gaseous pollutants. Gaseous pollutants were initially adsorbed and concentrated by activated carbon and could be further decomposed more effectively by photocatalytic technology.
This study coated TiO2 on the activated carbon fiber (ACF) by a sol-gel process for conducting the adsorption and decomposition of acetone in a batch reactor. Operating parameters investigated in this study included the initial concentration of acetone (13.6 μM and 27.2 μM), reaction temperature (50℃~70℃), oxygen concentration (0.5%~20%), and water vapor (0 μM~244.9 μM). The incident UV light of 365 nm was irradiated by a 15-watt low-pressure mercury lamp placing above the photocatalytic batch reactor. The ACF coated with TiO2 was placed in the center of the reactor. Acetone was injected into the reactor to conduct photocatalytic tests. Reactants and products were analyzed quantitatively by a gas chromatography with electron capture detector (GC/ECD) and a flame ionization detector followed by a methaneizer (GC/FID-Methaneizer).
Results from the photocatalysis tests indicated that, among the commercial TiO2 (Degussa P-25), NO3-/TiO2 and SO42-/TiO2, SO42-/TiO2 had the best photoactivity reduced acetone concentration and reaction time substantially. The end products was mainly CO2 and CO, which resulted in the mineralization ratio above 95%. Results from the operating parameter tests revealed that the increase of the initial acetone concentration enhanced the amount of acetone adsorbed on the ACF, which however did not increase the reaction rate of acetone. Although the increase of reaction temperature could reduce the amount of acetone adsorbed on the ACF, decomposition rate of acetone could be promoted, so as the yield rate and mineralization ratio of products (CO2 and CO). Increasing oxygen concentration did not influence the decomposition significantly except for oxygen concentration lower than 1%. The increase of water vapor would slightly decrease the amount of acetone adsorbed on the ACF, which did not decrease the decomposition of acetone anyway. This study revealed that the decomposition of acetone on TiO2/ACF can enhance the mass transfer of acetone substantially.
目次 Table of Contents
謝誌……………………………………………………………………................................................ I

中文摘要…………………………………………………………….................................................. II

英文摘要…………………………………………………………….................................................. IV

目錄……………………………………………………………………................................................ VI

表目錄……………………………………………………………………............................................ XI

圖目錄……………………………………………………………………............................................ XII


第一章諸論……………………………………………………………………................................ 1-1
1-1研究緣起……………………………………………………………………..................... 1-1
1-2研究目的……………………………………………………………………..................... 1-3

第二章文獻回顧……………………………………………………………………..................... 2-1
2-1 丙酮之特性及暴露來源………………………………………………………… 2-1
2-2光催化反應原理……………………………………………………………………... 2-3
2-2-1 光觸媒表面之吸附現象……………………………………………….. 2-9
2-2-2 光催化反應動力分析…………………………………………………... 2-12
2-3二氧化鈦光觸媒……………………………………………………………………… 2-15
2-3-1 二氧化鈦之物化特性…………………………………………………...
2-3-2 二氧化鈦之製備方法…………………………………………………...
2-4 活性碳之特性及吸附原理………………………………………………………
2-4-1 活性碳之種類………………………………………………………………
2-4-2 活性碳之物化特性……………………………………………………….
2-4-3 活性碳纖維與傳統活性碳之比較………………………………...
2-4-4 活性碳之吸附機制………………………………………………………
2-5 二氧化鈦及活性碳之協同作用………………………………………………
2-6 影響UV/TiO2光催化反應之操作參數……………………………………
2-6-1 光強度的影響………………………………………………….................... 2-29
2-6-2 溫度的影響…………………………………………………......................... 2-30
2-6-3 氧濃度的影響………………………………………………….................... 2-31
2-6-4 濕度的影響…………………………………………………......................... 2-32
2-7 光催化反應器種類…………………………………………………........................ 2-32
2-8 光催化反應產物分析............................................................................................... 2-34

第三章研究方法 3-1
3-1實驗材料…………………………………………………................................................. 3-3
3-1-1 光觸媒製備方法………………………………………….......................... 3-5
3-1-2 溶膠凝膠法製備二氧化鈦溶液……………………........................ 3-5
3-1-3 浸漬覆膜法製備二氧化鈦薄膜……………………........................ 3-7
3-2 光催化氧化實驗設計…………………………….................................................. 3-7
3-2-1 批次式光催化氧化系統……………………......................................... 3-8
3-2-2 操作參數及範圍……………….................................................................. 3-9
3-2-3 採樣與分析系統…………………………….............................................. 3-10
3-3 光催化氧化反應實驗………………………........................................................... 3-11
3-4 產物分析方法……………………….......................................................................... . 3-13
3-5 品保與品管……………………….......................................................................... .... 3-14

第四章 結果與討論………………………........................................................................ 4-1
4-1光觸媒及載體之篩選……….......................................................................... .......... 4-1
4-2光觸媒基本特性分析……….......................................................................... .......... 4-3
4-2-1 比表面積分析結果................................................................. .................. 4-3
4-2-2 掃描式電子顯微鏡與能譜儀分析結果........................................ 4-4
4-2-3 X光繞射繞射儀與感應耦合電漿質譜分析結果............... 4-9
4-3實驗系統特性測試結果.......................................................................................... 4-12
4-3-1 系統測試結果............................................................................................... 4-13
4-3-2 均相光解反應測試結果......................................................................... 4-14
4-3-3 不照光丙酮吸附測試............................................................................... 4-15
4-3-4 光活性持續測試測試結果.................................................................... 4-20
4-3-5 重複性測試結果.......................................................................................... 4-22
4-4 產物分析結果.............................................................................................................. 4-23
4-5 活性碳對TiO2/ACF光催化氧化反應之影響…………………………… 4-25
4-6 操作參數對光催化氧化反應之影響............................................................. 4-30
4-6-1 丙酮初始濃度對光催化氧化反應之影響.................................. 4-30
4-6-2 反應溫度對光催化氧化反應之影響............................................. 4-34
4-6-3 氧濃度對光催化氧化反應之影響.................................................. 4-36
4-6-4 水氣含量對光催化氧化反應之影響............................................. 4-44
第五章 結論與建議……………………….......................................................................... ..... 5-1
5-1 結論……………………….......................................................................... ...................... 5-1
5-2 建議……………………….......................................................................... ...................... 5-2
參考文獻……………………….......................................................................... .............................. 6-1
附錄 A 丙酮、二氧化碳與一氧化碳檢量線................................................... ....... A-1
附錄 B EDS分析結果.................................................. ............................ ............. ........... B-1
附錄 C 氣體分析圖譜 (a)丙酮 (b)產物CO2、CO............... ............. .............. C-1
附錄 D TiO2/ACF之FTIR分析圖譜 (a)反應前 (b)反應後...... ................ D-1
附錄 E 本研究之各操作參數及產物礦化率一覽表.......... ............. ............... E-1

表1-1 各種揮發性有機污染物處理方法之比較……………………………... 1-5
表1-2 可利用光催化法處理之VOCs種類……………………………………… 1-6
表2-1 丙酮之物理及化學特性…………………………………………….………… 2-2
表2-2 化學鍵結所需斷裂能量…………………………………………….…………. 2-4
表2-3 物理吸附和化學吸附之比較…………………………………………….….. 2-12
表2-4 銳鈦礦與金紅石之物理特性比較………………………………………… 2-17
表2-5 不同觸媒製備方法之比較…………………………………………….……… 2-21
表2-6 不同鍛燒溫度下光觸媒比表面積與孔隙直徑之變化….……… 2-22
表2-7 活性碳之孔隙大小分佈狀況………………………………………….…… 2-24
表3-1 光催化實驗之操作參數及範圍…………………………………….……… 3-10
表3-2 品保及品管查核結果一覽表………………………………………….…….. 3-18
表4-1 光觸媒篩選實驗之操作參數及範圍……………………………….……. 4-2
表4-2 不同吸附劑之比表面積與孔隙直徑……………………………….……. 4-4
圖2-1 半導體受光激發後之電子-電洞生成及界面反應………………. 2-10
圖2-2 常用半導體之能隙……………………………………………………………. 2-11
圖2-3 觸媒受光激發後之光催化反應示意圖……………………………… 2-11
圖2-4 銳鈦礦與金紅石之晶格結構…………………………………………… 2-17
圖2-5 活性碳纖維與粒狀活性碳孔洞大小分佈之比較………………. 2-26
圖2-6 活性碳纖維與粒狀活性碳表面孔洞結構的比較………………. 2-26
圖2-7 光催化分解MTBE反應路徑……………………………………………… 2-38
圖3-1 實驗流程……………………………………………………………………………. 3-2
圖3-2 溶膠凝膠法製備TiO2光觸媒流程圖…………………………………. 3-6
圖3-3 批次式光催化氧化反應系統示意圖…………………………………. 3-9
圖4-1 光觸媒篩選測試–CO2及CO產物累積產量圖……………………. 4-2
圖4-2 ACF之SEM圖(a)100倍(b)1,000倍(c)10,000倍………………… 4-5、7
圖4-3 TiO2/ACF之SEM圖(a)2,000倍(b)10,000倍…………………………. 4-7、8
圖4-4 TiO2/ACF上之TiO2粉末SEM 圖(放大50,000倍)…………… 4-8
圖4-5 TiO2光觸媒之XRD分析圖(◇:Anatase成份) …………………… 4-11
圖4-6 批次式光氧化反應器之壓力測試結果………………………………. 4-13

圖4-7 均相光解反應測試結果……………………………………………………. 4-15
圖4-8 丙酮初始濃度除以濃度隨時間之變化趨勢圖……………………. 4-18
圖4-9 不同吸附溫度氣相丙酮濃度隨時間變化趨勢圖………………. 4-18
圖4-10 丙酮吸附量與平衡濃度之關係圖………………………………………. 4-19
圖4-11 平衡濃度與平衡濃度除以吸附量之線性關係圖……………… 4-19
圖4-12 表面覆蓋率與平衡濃度之關係圖……………………………………… 4-20
圖4-13 光活性測試結果………………………………………………………………… 4-21
圖4-14 重複性測試結果………………………………………………………………… 4-24
圖4-15 不同載體對於丙酮吸附與光催化作用隨時間變化趨勢圖…. 4-27
圖4-16 不同載體對產物CO2、CO之產量隨時間變化趨勢圖………… 4-28
圖4-17 載體篩選測試–產物CO2、CO之產率趨勢圖……………………… 4-29
圖4-18 丙酮濃度隨時間變化趨勢圖……………………………………………… 4-32
圖4-19
產物CO2、CO之產量隨時間變化趨勢圖……………………………
4-32、
33
圖4-20 產物CO2+CO之產量隨時間變化趨勢圖…………………………….. 4-33
圖4-21 丙酮反應動力示意圖………………………………………………………… 4-34
圖4-22 丙酮濃度隨時間變化趨勢圖……………………………………………… 4-37
圖4-23 產物CO2、CO之濃度隨時間變化趨勢圖…………………………… 4-38
圖4-24 產物CO2、CO之產量隨時間變化趨勢圖…………………………… 4-39
圖4-25 產物CO2、CO之產率隨溫度變化趨勢圖…………………………… 4-40
圖4-26 丙酮濃度隨時間變化趨勢圖……………………………………………… 4-42
圖4-27 產物CO2、CO之生成濃度隨氧濃度變化之趨勢圖…………… 4-43
圖4-28 產物CO2、CO之生成產量隨氧濃度變化之趨勢圖…………….. 4-43
圖4-29 產物CO2、CO之生成產率隨氧濃度變化之趨勢圖…………….. 4-44
圖4-30 丙酮濃度隨時間變化趨勢圖……………………………………………… 4-47
圖4-31
TiO2/ACF吸附丙酮之平衡吸附量隨水分子濃度變化趨勢圖…………………………………………………………………………………………
4-48
圖4-32 產物CO2、CO之生成濃度隨水分子濃度變化之趨勢圖…… 4-49
圖4-33 產物CO2、CO之生成產量隨水分子濃度變化之趨勢圖…… 4-49
圖4-34 產物CO2、CO之生成產率隨水分子濃度變化之趨勢圖…… 4-50
參考文獻 References
1. 顧洋、江立偉,“以紫外線/二氧化鈦程序處理氣相苯、甲苯及二甲苯污染物反應行為之研究”,第十六屆空氣污染控制技術研討會論文集,pp.704-714,1999。
2. 劉國棟,“VOC管制趨勢展望”,工業污染防治,48期,pp.15-31,1993。
3. Jacoby, A.W.;Blake, D.M. and Fennell, J.A., Boulter, J.E., and Vargo, L.M., “Hetergeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air,” J.A&WMA , Vol.46, pp.891-898, 1996.
4. 沈明宗,“實場蓄熱式焚化爐處理排氣中揮發性有機物之操作性能研究”,國立中山大學環境工程研究所碩士論文,2000。
5. 林芝寧,“新竹地區毒性化學物質流布之風險評估”,淡江大學水資源及環境工程學系碩士論文,2001。
6. 游振煥,“建物塗裝VOCs逸散特性之研究”,第二十一屆空氣污染控制技術研討會,2004。
7. 林敏男,“半導體業作業環境中揮發性有機化合物氣相層析質譜儀分析方法建立”,國立清華大學原子科學系碩士論文,1999。
8. Legan, R.W., “Ultraviolet Light Takes on CPI Roles,” Chemical Engineering, January, pp.95, 1982.
9. 顧洋,“以紫外線/臭氧程序處理氣相揮發性有機污染物反應行為之研究”,行政院國家科學委員會專題研究計劃成果報告,1997。
10. Hoffmann, M.R.; Martin, S.T.; Choi, W. and Bahnemann, D.W., “Environmental Applications of Semiconductor Photocatalysis,”
Chem. Rev., Vol.20, pp.69-95, 1995.
11 Hoffmann, M.R.; Martin, S.T.; Choi, W. and Bahnemann, D.W., “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., Vol.95, pp.69-96, 1995.
12. Gray, K.A.; Stafford, U.; Dieckmann, M.S. and Kamat, P., “Mechanistic Studies in TiO2 System: Photocatalytic Degradation of Chloro- and Nitrophenols,” Photocatalytic Purification and Treatment of Water and Air., pp.815-820, 1993.
13. Ku, Y.; Leu, R.M. and Lee, K.C., “The Effect of Dissolved Oxygen on the Treatment of 2-Chlorophenol in Aqueous Solution by the UV/TiO2 Process,” Journal of the Chinese Instiute of Environment Engineering., Vol.6(1), pp.43-49, 1996.
14. Huston, P.L. and Pignatello, J.J., “Reduction of Perchloroalkanes by Ferrioxylate Radical Preceding Mineralization by the Photo-Fenton Reaction,” ES&T, Vol.30, pp.3457-3463, 1996.
15. Leung, S.W.; Watts, R.J. and Miller, G.C., “Degradation of Perchloroethylene by Fenton‘s Reagent:Speciation and Pathway,” J. Environ. Qual. Vol.21, pp.377-381, 1992.
16. Anpo, M.; Yamashita, H.; Ikeue, K.,Fujishima, Y.; Zhang, S. G.; Ichihashi,Y.; Park, D. R.; Suzuki, Y.; Koyano, K. and Tatsumi, T., “Photocatalytic Reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 Mesoporous Zeolite Catalysts,” Catalysis Today, Vol.44, pp.327-332, 1998.
17. Martin, S.T.; Herrmann, H.; Choi, W. and Hoffmann, M.R., “Time-resolved Microwave Conductivity,” J. Chem. Soc. Faraday Trans. I., Vol.90, pp.3315-3322, 1994.
18. Fox, M.A. and Dulay, M.T., “Hetergeneous Photocatalysis,” Chem.
Rev., Vol.93, pp.341-357, 1993.
19. Kamat, P. V., “Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces,” Chem. Rev., Vol.93, pp.267-300, 1993.
20. Okamoto, K.I.; Yamamoto. Y.; Hanaka, H. and Tanaka, M., “Hetergeneous Photocatalytic Decomposition of Phenol over TiO2 Powder,” Bull. Chem. Soc. Jpn., Vol.58, pp.2015-2022, 1985.
21. Liljestand, H.M. and Sattler, M.L., “Photocatalytic Oxidation Processes for In-Door Air Pollution,” The 89th Air & Waste Management Assoication. Annual Meeting, June, 1996.
22. Suzuko, Y.N.; Fu, X., Anderson, M.A. and Hori, K., “Chlorinated By-product from the Photoassisted Catalytic Oxidation of Trichloroethylene and Trachloroethylene in the Gas Phase Using Porous TiO2 Pellets,” J. of Photochemistry and Photobiology., Vol.97, pp.175-179, 1996.
23. Bolton. J.; Ali, S.A.; Buckley, J.A.; Notarfonzo, R. and Cater, S., “Homogeneous Photodegradation of Pollutants in Air,” The 87 th Air and Waste Management Association. Annual Meeting, Cininnati, Ohio, June, 1994.
24. 吳榮宗,“工業觸媒概論”,黎明書局,pp.72-85,1985。
25. 吳炳佑、陳湘林、蔣孝澈,“二氧化鈦光觸媒膜之製作與應用”,觸媒與製程,第6卷,pp.52-68,1997。
26. 陳永芳,“以四異丙醇鈦為前驅物利用化學氣相沉積法和水解法製備二氧化鈦”,國立交通大學應用化學研究所博士論文,2003。
27. Linsebigier, A. L.; Lu, G. and Yates, J.T., “Photocatalysis on TiO2

Surface: Principles, Mechanism, and Selected Results,” Chemistry
Reviews, Vol.95, pp.735-758, 1995.
28. Ronald, J.G.; David, A.H.; Colin, B.N. and Edward, A.R., “Chemistry,” Allyn and Bacon, New York, 1986.
29. Hofstadler, K.; Bauer, R.; Novalic, S. and Heisler, G., “New Reactor Design for Photocatalytic Wastewater Treatment with TiO2
Immobilized on Fased-Silica Glass Fiber,” Environmetnal Science & Technology, Vol.28, pp.670-674, 1994.
30. Gao, L. and Zhang, R., “Preparation of Nanosized Titania by Hydrolysis of Alkoxide Titanium in Micells,” Materials Research Bulletin, Vol.37, pp.1639-1666, 2002.
31. 謝秉勳,“奈米級光觸媒之製備及光催化活性測定”,國立台灣大學環境工程研究所碩士論文,2002。
32. Morterra, C., “An Infrared Spectroscopic Study of Anatase Properties,” Journal of Chemistry Socienty Faraday Trans.(I), Vol. 84, pp.1617-1637, 1988.
33. Sakai, H,; Kawahara, H.; Shimazaki, M. and Abe, M., “Preparation of Ultrafine Titanium Dioxide Particles Using Hydrolysis and Condensation Reactions in the Inner Aqueous Phase of Reversed Micelles: Effect of Alcohol Adition,” Langmuir, Vol.14, pp.2208-
2212, 1998.
34. Ha, H.Y. and Anderson, M.A., “Photocatalytic Degration of Formic Acidvia Metal-supported Titania,” Journal of Environment Engineering, Vol.122, pp.217-221, 1996.
35. Kim, S.; Park, J.K. and Hee-Dong, C., “Pyrolysis Kinetics of Scrap Tire Rubbers. I: Using DTG and TGA,” J. Environ. Eng.,
pp.507-514, 1995.
36. Bansal, R.C., “Active Carbon, Marcel-Dekker,” New York and Basel, pp.3-4, 1988.
37. Gibb, W.H.; Clarke, F. and Mehta, A.K., “ The Fate of Coal Mercury During Combustion,” Fuel Process. Technol., Vol.65-66, pp.365-377, 2000.
38. 劉明翰,“粉狀活性碳吸附氯化汞之研究:操作參數之影響及恆溫吸附模式之建立”,國立中山大學環境工程研究所碩士論文,2001。
39. 林菁菁,“PAN 系活性碳纖維鍍銀之物性、微結構與抗菌能力研究”,逢甲大學材料科學研究所碩士論文,2001。
40. 彭兆群,“碳纖維吸附材應用在水質處理上的探討”,國立台灣科技大學纖維及高分子工程技術研究所碩士論文,1999。
41. 葉國樑、吳瑞賢、許峰明、林勝雄,「以粒狀活性碳及活性碳纖維處理氣相有機物之研究比較」,石油季刊,第32 卷,第一期,pp. 43-52,1996。
42. 邱正宏,“吸附於活性碳表面揮發性有機物之熱脫附動力學研究”,國立中山大學環境工程研究所碩士論文,1993。
43. 蔣本基,“活性碳物理化學特性對VOCs吸附之影響”,工業污染防治,第58期,1996。
44. 楊英傑,“以球狀活性碳吸附水溶液中甲苯及其脫附方法之研究”,國立成功大學化學工程研究所碩士論文,1992。
45. 劉瑞華,“低濃度揮發性有機物在吸附劑中之傳輸與平衡研究”,國立成功大學環境工程研究所碩士論文,1998。
46. Yoneyama, H., “Titanium Dioxide/Adsorbent Hybrid Photocatalysts for Photodestruction of Organic Substances of Dilute Concentrations,” Catalysis Today, Vol.58, pp.133-140, 2000.
47. 柯澤豪、李建鴻、胡忠華,「活性碳纖維之發展及其應用」,
化工技術,第六卷,第四期,pp.134-141,1998。
48. 楊慶熙、葉芳露、曾德意、陳明輝、黃志峰、李怡萱、王厚傳、
謝長良、陳旺,「中小型焚化爐廢氣重金屬控制技術介紹」,工業污染防治,第72期,pp.82-100,1999。
49. Brasquet, C. and Cloirec, P. L., “Adsorption onto Activated Carbon Fbers :Application to Water and Air Treatments,” Carbon, Vol.35, No.9, pp.1307-1313, 1997.
50. Matos, J.; Laine J. and Jean-Marie Herrmann, “Synergy Effect in the Photocatalytic Degradation of Phenol on a Suspended Mixture of Titania and Activated Carbon,” Applied Catalysis B: Environmental, Vol.18, pp.281-291, 1998.
51. 陳冠宏,“以Cu/ACF 觸媒處理含氨水溶液之研究”,國立中山大學環境工程研究所碩士論文,2003。
52. 潘冠廷,“含活性碳與奈米二氧化鈦不織布製備及其對異丙醇光分解測試”,第一屆環境保護與奈米科技學術研討會,2004。
53. Ao C.H., “Enhancement Effect of TiO2 Immobilized on Activated Carbon Filter for the Photodegration of Pollutions at Typical Indoor Air Level,” Applied Catalysis B: Environmental , Vol.44, pp.191-
205, 2003.
54. Jacoby, A.W.; Blake, D.M.; Noble, R.D. and Koval, C.A., “Kinetic
of the Oxidation of Trichlorothylene in Air Via Heterogeneous
Photocatalysis,” J. Catal., Vol.157, pp.87-96, 1995.
55. Raupp, G.B. and Junio, C.T., “Photocatalytic Oxidation of
Oxygenated Air Toxics,” Appl. Sur. Sci., Vol.72, pp.321, 1993.
56. Dibble, L.A. and Raupp, G.B., “Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Air Streams,”
ES&T, Vol.26, pp.492-495, 1992.
57. Peill, N.J. and Hoffmann, M.R., “Chemical and Physical Characterization of a TiO2-Coated Fiber Optical Cable Reactor,” ES&T, Vol.30, pp.2806-2812, 1996.
58. 劉安治,“近紫外光/二氧化鈦光催化分解氣相中低濃度四氯乙烯之操作參數探討”,國立中山大學環境工程研究所碩士論文,1997。
59. 吳永俊,“近紫外光/二氧化鈦光催化分解三氯乙烯之研究”,國立中山大學環境工程研究所碩士論文,1996。
60. Jardim, W.F.; Aiberic, R.M.; Takiyama, M.K. and Huang, C.P., “Gas-phase Photocatalytic Destruction of Trichloroethylene Using UV/TiO2,” The 26th Mid-Atlantic Industrial and Hazardous Waste Conference, Delaware, USA, 1994.
61. Fu, X.; Clark, L.A.; Zenlter, W.A. and Anderson, M.A., “Effects of Reaction Temperature and Water Vapor Content on The Heterogeneous Photocatalytic Oxidation of Ethylene,” Journal of Photochemistry and Photobiology., Vol.97, pp.181-186, 1996.
62. Vorontsov, A. V.; Kurkin, E. N. and Savinov, E. N. “Study of TiO2 Deactivation during Gaseous Acetone Photocatalytic Oxidation,”
Journal of Catalysis, Vol.186, pp.318-324, 1999.
63. Wang, K.M. and Marinas, B.J. “Control of VOC Emissions from
Air-Stripping Towers: Development of Gas-Phase Photocatalytic
Process,” in Photocatalytic Purification and Treatment of Water and
Air,Ollis, D. F., Al- Ekabi, H., Eds., Elsevier: Amsterdam, pp.733-737, 1993.
64. Hung, C.H. and Marinas, B.J., “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films,” ES&T, Vol.31(2) , pp.562-568, 1997.
65. Ibusuki, T. and Takeuchi, K., “Toluene Oxidation on U.V.-Irradiated
Titanimn Dioxide with and without O2, NO2, or H2O at Ambient Temperature,” Atmospheric Environment, Vol.20, pp.1711, 1986.
66. Gratson, D.A.; Nimos, M.R. and Wolfrum, E.J., “Photocatalytic Oxidation of Gas-Phase BTEX-Contaminated Waste Streams,” The 88th Air & Waste Management Assoication. Annual Meeting, June, 1995.
67. Ibusuki, T.; Kutsuna S.; Takeuchi., K.; Shin-Kai, K.; Sasamoto, T. and Miyamoto, M., “Removal of Low Concertration Air Pollutionts through Photoassisted Heterogeneous Catalysis,” in Photocatalytic Purification and Treatment of Water and Air, Ollis, D.F., Al-Ekabi, H., Eds., Elsevier: Amsterdam, pp.375, 1993.
68. Anderson, M.A.; Aeltner W.; Fu, X. and Tompkins, D., “Chamber Studies Comparing the Effectiveness of Photocatalytic Degradtion and Activated Carbon for the Treatment of Indoor Air,” Air & Waste Management Assoication Annual Meeting, June, 1996.
69. Peral, J. and Ollis, D. F., “Heterogeneous Photocatalytic Oxidation
of Gas-Phase Organics for Air Purification : Acetone, 1-Butanol,
Butyraldehyde, Formaldehyde, and m-Xylene Oxidation,” J. Catal.,
Vol.134, pp.554-565, 1992.
70. Xu, W. and Raftery, D., “In SituSolid-State Nuclear Magnetic Resonance Studies of Acetone Photocatalytic Oxidation on Titanium Oxide Surfaces,” Journal of Catalysis, Vol.204, pp.110-117, 2001.
71. Park, S. E.; Joo, H. and Kang, J. W., “Photodegradation of Methyl Tertiary Butyl Ether (MTBE) Vapor with Immobilized Titanium Dioxide,” Solar Energy Materials and Solar Cells, Vol.80(1), pp.73, 2003.
72. 吳政峰,“溫度與濕度效應對光催化分解氣相揮發性有機物之影響”,國立中山大學環境工程研究所博士論文,2005。
73. Cot, F.; Larbot, A.; Nabias, G. and Cot, L., “Preparation and Characterization of Colloidal Solution Derived Crystallized Titaniapowder,’’ Journal of the European Ceramic Society, Vol.18, pp.2175-2181, 1998.
74. Yamazaki, S.; Fujinaga, N. and Araki, K., “Effect of Sulfate ions for Sol-Gel of Titania Photocatalyst,” Applied Catalysis A : General, Vol.210, pp.97-102, 2001.
75. 蕭德福,“以改質之TiO2光觸媒探討四氯乙烯分解率及礦化率之影響”,國立中山大學環境工程研究所碩士論文,2000。
76. Fox, M. A. and Dulay, M. T., “Hetergeneous photocatalysis”, Chem Rev 3, Vol.93, pp.341, 1989.
77. 王國華,“以UV/TiO2程序處理氣相中三氯乙烯之研究”,國立中興大學環境工程研究所博士論文,1998。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code