Responsive image
博碩士論文 etd-0906106-180939 詳細資訊
Title page for etd-0906106-180939
論文名稱
Title
以蛋白質體模式探討Klebsiella oxytoca分解腈化合物(nitriles)之蛋白質變化
Proteomic analysis of nitrile-induced proteins in Klebsiella oxytoca
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-14
繳交日期
Date of Submission
2006-09-06
關鍵字
Keywords
蛋白質體、Klebsiella oxytoca、nitrile、二維電泳
two-dimensional polyacrylamind gel electrophoresis, nitrile, proteomic, Klebsiella oxytoca
統計
Statistics
本論文已被瀏覽 5674 次,被下載 11
The thesis/dissertation has been browsed 5674 times, has been downloaded 11 times.
中文摘要
Klebsiella oxytoca SYSU-011是一株由南台灣電鍍工廠廢水中分離出之氰化物分解菌。K. oxytoca可以利用九種不同之腈化合物[包括acetonitrile (100 mM)、benzonitrile (1 mM)、butyronitrile (100 mM)、glutaronitrile (50 mM)、methacrylnitrile (100 mM)、phenylacetonitrile (1 mM)、propionitrile (25 mM)、succinonitrile (25 mM) 及valeronitrile (50 mM)]作為其生長所需的氮源。其中又以acetonitrile及propionitrile最容易被此菌分解。本研究係以氣相層析法(GC) 和蛋白質體分析來探討K. oxytoca分解acetonitrile及propionitrile的代謝途徑。由GC分析結果發現分解腈化合物的產物中,有amide、carboxylic acid和ammonia的產生;其中amide為中間產物,而carboxylic acid和ammonia則為分解腈化物的最終產物。推測K. oxytoca是以nitrile hydratase及amidase路徑來分解腈化物。此外,培養在含有25mM succinonitrile環境下的菌體,利用雙向膠體電泳(two-dimensional polyacrylamide gel electrophoresis)來分析比對本菌基因表現出蛋白質的種類與數量之不同,確定有明顯被誘導出現變化的蛋白質共23種。經由質譜分析後blast所比對出來的蛋白質共有11種,其餘的蛋白質點並沒有比對到合適的蛋白質。Succinonitrile所誘導出蛋白質如:superoxide dismutase、glutathione s-transferase、dyp-type peroxidase、metal binding protein PsaA(主要是在傳遞金屬離子)、LraI及FepA(無機離子的傳遞),防止菌體受到氧化性傷害。另外還有三個蛋白質glutamine synthetase、methylenetetrahydrofolate reductase和dihydroxyacid dehydratase具有合成胺基酸的功能,另外ribosomal protein L9目前功能尚不清楚,而nucleoside triphosphates kinase則是催化nucleoside diphosphates轉換成nucleoside triphosphates的nonsubstrate specific conversion。另外超氧岐化酶活性(superoxide dismutase, SOD)及glutathione S-transferase(GST)酵素活性測定結果顯示,培養在25mM succinonitrile環境下SOD 酵素及GST酵素活性皆提分別升為2.5倍及1.8倍,而且也發現ROS濃度有上升現象。這些結果顯示出succinonitrile可能會造成氧化性傷害而誘導出一些抵抗氧化性傷害的蛋白質來保護菌體不受傷害。
Abstract
The cyanide-degradation bacteria Klebsiella oxytoca SYSU-110 was isolated from the waste water of a metal-plating plant in southern Taiwan. K. oxytoca can utilize many nitrile compounds [including acetonitrile (100 mM), benzonitrile (1 mM), butyronitrile (100 mM), glutaronitrile (50 mM), methacrylnitrile (100 mM), phenylacetonitrile (1 mM), propionitrile (25 mM), succinonitrile (25 mM) and valeronitrile (50 mM)] as its sole nitrogen source. In this study, we found out that K. oxytoca was capable of degrading acetonitrile and propionitrile. Frome GC analysis, we recognized amide was an intermediate compound, while the carboxylic acid and ammonia were the final end-products. Therefore, we presume that K. oxytoca biodegraded nitrile compounds by two enzymes, the nitrile hydratase and amidase. We also analyzed the total cell proteins by 2-D polyacrylamide gel electrophoresis after the cells were cultured in medium containing 25mM succinonitrile. There were 23 proteins could be induced or overexpressed by nitrile and we had identified 11 by Mascot Peptide mass Fingerprint and Blast. Six proteins that can protect the cells from oxidative damage are: superoxide dismutase, glutathione s-transferase, dyp-type peroxidase, metal binding protein PsaA (that can transport metal ions into the cells), LraI, and FepA (used to transport inorganic ions into the cells). Three enzymes glutamine synthetase, methylenetetrahydrofolate reductase, and dihydroxyacid dehydratase were used to synthesize amino acids. One protein was identified as ribosomal protein L9. The last identified protein is nucleoside triphosphates kinase which can convert nucleoside diphosphates to nucleoside triphosphates non-specifically. From the activity analysis, superoxide dismutase and glutathione S-transferase activities were escalated when the cells were cultured in 25mM succinonitrile, and the concentration of ROS has rise. These results suggested that succinonitrile could cause oxidative damage to the cells and induce some anti-oxidative damage proteins to protect them.
目次 Table of Contents
中文摘要………………………………………………………………………II
英文摘要………………………………………………………………………IV
目錄……………………………………………………………………VI
圖目錄………………………………………………………………………VII
表目錄…………………………………………………………………IX
前言……………………………………………………………………1
材料與方法………………………………………………………………………14
結果與討論………………………………………………………………………22
參考資料………………………………………………………………………30
圖………………………………………………………………………46
表………………………………………………………………………61
附錄……………………………………………………………………62
參考文獻 References
Alexander K, and Volini M, (1987) Properties of an Escherichia coli rhodanese. J Biol Chem. 262:595604
Almatawah QA, Cramp R, and Cowan D (1999) Characterization of an inducible nitrilase from a thermophilic Bacillus. Extremophiles. 3:283–291
Allocati N, Favaloro B, Masulli M, Alexyev M F, and Dillio C (2003) Proteus mirabilis glutathione S-transferase B1-1 is involved in protective mechanisms against oxidative and chemical stresses. Biochem J. 373:305–311
Akcil A (2003) Destruction of cyanide in gold mill effluents: biological versus chemical treatments. Biotechnol Adv. 21:501-511
Amer J, Goldfarb A, Fibach E (2003). Flow cytometric measurement of reactive oxygen species production by normal and thalassaemic red blood cells. Eur J Haematol. 2: 84-90
Anderson, NL, and Anderson NG (1998) Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis. 19: 1853-1861
Asano Y, and Kato Y (1998) Z-Phenylacetaldoxime degradation by a novel aldoxime dehydratase from Bacillus sp. strain OxB-1. FEMS Microbiol Lett. 158:185–190
ATSDR (1997) Toxicological Profile for Cyanide. Atlanta, GA: US Department of Health Human Services, Public Health Service
Avato P, Pesante MA, Fanizzi FP, and Santos CA (2003) Seed oil composition of Paullinia cupana var. sorbilis (Mart.) Ducke. Lipids. 38(7):773-80
Babu BN, and Brown OR (1995) Quantitative effects of redox-cycling chemicals on the oxidant-sensitive enzyme dihydroxy-acid dehydratase. Microbios. 82:157-170
Bandopadhayay A, Nagasawa T, Asano Y, Fujishiro K, Tani Y, and Yamada H (1986) Purification and characterization of benzonitrilase from Arthrobacter sp. J1. Appl Environ Microbiol. 51:302–306
Banerjee A, Sharma R, and Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol. 60:33–44
Barclay M, Hart A, Knowles CJ, Meeussen JCL, and Tett VA (1998) Biodegradation of metal cyanides by mixed and pure cultures of fungi. Enzyme Microb Technol. 23:321-330
Bauer A, Layh N, Slydatk C, and Willetts A (1996) Polyvinyl alcohol-immobilized whole-cell preparations for the biotransformation of nitriles. Biotechnol Lett. 18: 343-348
Bernardo AMD, Julio CRMD, and Mar´ıa TC (2004) Metabolism of homocysteine and its relationship with cardiovascular disease. J Thromb Thrombolysis. 18: 75–87
Bhattacharya J, GhoshDastidar K, Chatterjee A, Majee M, and Majumder AL (2004) Synechocystis Fe superoxide dismutase gene confers oxidative stress tolerance to Escherichia coli. Biochem Biophys Res Commun. 316:540–544
Bogdanov PM, Bertorello MM, and Albesa I (1998) Oxidative Stress in Staphylococcus aureus Associated to the Cleavage of an Isoxazolylnaphthoquinoneimine with Antibacterial Capacity. Biochem Biophys Res Commun. 244:561–566
Botz M, and Mudder T, (1997) Mine water treatment with activated carbon. pp. 504-511
Brill WJ (1980) Biochemical genetics of nitrogen fixation.Microbiol Rev. 44: 449-467
Brown OR, Smyk-Randall E, Draczynska-Lusiak B, and Fee JA (1995) Dihydroxy-acid dehydratase, a [4Fe-4S] cluster-containing enzyme in Escherichia coli: effects of intracellular superoxide dismutase on its inactivation by oxidant stress. Arch Biochem Biophys. 319:10-22
Bulbuloglu E, Inanc F, Bakaris S, Kantarceken B, Centinkaya A, Caglar R,
31
Kaleilhami T, and kilinc M (2005) Association of adenosine deaminase, superoxide dismutase, and catalase activities with Helicobacter pylori. Dig Dis Sci. 50:2296–2299
Chen SC, and Liu JK (1999) The respiratory response to cyanide of a cyanide-resistance Klebsiella oxytoca bacterial stran. FEMS Micrbiol Lett. 51:37-43
Chillemi R, Zappacosta B, Simpore J, Persichilli S, Musumeci M, and Musumeci S (2004) Hyperhomocysteinemia in acute Plasmodium falciparum malaria: an effect of host–parasite interaction. Clin Chim Acta. 348:113-120
Cluness M, Turner PD, Clements E, Brown DT, and O’Reilly C (1993) Purification and properties of cyanide hydratase from Fusarium lateritium and analysis of the corresponding chy1 gene. J Gne Microbiol. 139:1807-1815
Collins P, and Knowles C (1983) The utilization of nitriles and amides by Nocardia rhodochrous. J Gen Microbiol. 129:248–254
Conn EE (1981) in Cyanide in Biology (Vennesland B, Conn EE, Knowles C J, Westley J and Wissing F, Eds.), pp.183–196, Academic Press, London.
Dias JCT, Rezende RP, Rosa CA, Lachance MA, and Linardi VR (2000) Enzymatic degradation of nitriles by a Candida guilliermondii UFMG-Y65. Can. J. Microbiol. 46:525-531
Dias JCT, Rezende RP, and Linardi VR (2001) Bio-convertion of nitriles by Candida guilliermondii CCT 7207 cells immobilized in barium alginate. Appl Microbiol Biotechnol 56:757-761
DiGeronimo MJ, and Antoine AD (1976) Metabolism of acetonitrile and propionitrile by Nocardia rhodochrous LL 100-21. Appl Environ Microbiol 31:900–906
Dorr PK, and Knowles CT (1989) Cyanide oxygenase and cyanase activities of
32
Pseudomonas fluorescens NCIMB 11764. FEMS Microbiol Lett. 60:289-294
Ebbs S (2004) Biological degradation of cyanide compounds. Curr Opin Biotechnol. 15:231–236
Edalat M, Mannervik B, and Axelsson Lars-G_ran (2004) Selective expression of detoxifying glutathione transferases in mouse colon: effect of experimental colitis and the presence of bacteria. Histochem Cell Biol.122:151–159
Fallon R, Stieglitz B, and Turner I (1997) A Pseudomonas putida capable of stereoselective hydrolysis of nitriles. Appl Microbiol Biotechnol. 47:156-161
Fawcett JK, and Scott JE (1960) A rapid and precise method for the determina- tion of urea. J Clin Path. 13:156-160
Ferraz AC, Anselmo-Franci JA, Perosa SR, de Castro-Neto EF, Bellissimo MI, de Oliveira BH, Cavalheiro EA, Naffah-Mazzacoratti Mda G, and Da Cunha C (2002) Amino acid and monoamine alterations in the cerebral cortex and hippocampus of mice submitted to ricinine-induced seizures. Pharmacol Biochem Behav. 72(4):779-786
Flint DH, Emptage MH, Finnegan MG, Fu W, and Johnson MK (1993a) The role and properties of the iron-sulfur cluster in Escherichia coli dihydroxy-acid dehydratase. J Biol Chem. 268:14732-14742
Flint DH, Smyk-Randall E, Tuminello JF, Draczynska-Lusiak B, Brown OR. (1993b) The inactivation of dihydroxy-acid dehydratase in Escherichia coli treated with hyperbaric oxygen occurs becauosfe the destruction of its Fe-S cluster, but the enzyme remains in the cell in a form that can be reactivated. J Biol Chem. 268: 25547-25552
Flint DH (1996) Escherichia coli contains a protein that is homologous in function and N-terminal sequence to the protein encoded by the nifS gene of Azotobacter vinelandii and that can participate in the synthesis of the Fe-S cluster of
33
dihydroxy-acid dehydratase. J Biol Chem. 271:16068-16074
Fry WE, and Millar RL, (1972) Cyanide degradation by an enzyme from Stemphylium loti. Arch Biochem Biophys. 151:468-474
Godtfredsen SE, Ingvorsen K, Yde B, and Anderson O (1985) In: Tramper J, Vanderplas HC, Linko P (eds) Biocatalysis in organic syntheses. Elsevier, Amsterdam, 3–18
Goldhust A, and Bohak Z (1989) Induction, purification and characterization of the nitrilase of Fusarium oxysporum. Biotechnol Appl Biochem. 11:581–601
Gorg, A, C Obermaier, G Boguth, A Harder, B. Scheibe, R Wildgruber, and W Weiss. (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21: 1037-1053.
Graham D, Pereira R, Barfield D, and Cowan D (2000) Nitrile biotransformations using free and immobilized cells of a thermophilic Bacillus spp. Enzyme Microb Technol. 26:368-373
Grosse DW (1990) In encyclopedia of environmental technology, edition by cherimisinoff PN (Gulf Publ, Houston, USA) 4:541-611
Habig WH, Pabst MJ, and Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 249:7130-7139
Hardy, RWF, Burns RC, and Parsgal GW (1971) The biochemistry of nitrogen fixation. Adv Chem Ser. 100: 219-247
Harris RE, and Knowles CT, (1983) The conversion of cyanide to ammonia by extracts of a strain of Pseudomonas fluorescens that utilizes cyanide as a source of nitrogen of growth. FEMS Microbiol Lett. 20:337-341
Harper D (1977) Microbial metabolism of aromatic nitriles: enzymology of C-N cleavage by Nocardia sp. NCIB 11216. J Biochem. 165:309–319
Harper D (1985) Characterization of a nitrilase from Nocardia sp. (Rhodococcus
34
group) NCIB 11215, using p-hydroxybenzonitrile as sole carbon source. Int J Biochem. 17:677–683
Hayes JD, and Strange RC (2000) Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 61:154–166
Heinecke JS, Cerutti PA, Cerutti JM, McCord I, and Fridovich I editors Alan R. Liss (1988) Superoxide mediated oxidation of low-density lipoproteins by thiols. In Oxy-radicals in Molecular Biology and Pathology. New York. 433–457
Heukeshoven J, and Dernick R (1985) Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 6:103–112
Horowitz P, and DeToma F, (1970) Improved preparation of bovine liver rhodanese. J Biol Chem. 245:984-985
Ikehata O, Nishiyama M, Horinouchi S, and Beppu T (1989) Primary structure of nitrile hydratase deduced from the nucleotide sequence of a Rhodococcus species and its expression in Escherichia coli. Eur J Biochem. 181:563-570
Ingvorsen K, Hojer-Pedersen B, and Godtfredsen SE, (1991) Novel cyanide-hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. Denitrificans. Appl. Environ. Microbiol. 57:1783-1789
Jallageas JC, Arnaud A, and Galzy P (1980) Biocoversion of nitriles and their applications. Adv Biochem Eng. 14:1-31
Jarabak R, and Westley J, (1978) Steady-state kinetics of 3-mercaptopyruvate sulfurtransferase from bovine kidney. Arch Biochem Biophys. 185:458-465
Jenkinson H F (1994) Cell surface protein receptors in oral streptococci. FEMS Microbiol Lett. 121:133–140
Jia L, and Furchgott RF (1993) Inhibition by sulphydryl compounds of vascular relaxation induced by nitric oxide and endothelium-derived relaxing factor. J Pharmacol Exp Ther. 267:371–378
Johjima T, Ohkuma M, and Kudo T (2003) Isolation and cDNA cloning of novel hydrogen peroxide-dependent phenol oxidase from the basidiomycete Termitomyces albuminosus. Appl Microbiol Biotechnol. 61:220–225
Johnston JW, Myers LE, Ochs MM, Benjamin jr. WH, Briles DE, and Hollingshead SK (2004) Lipoprotein PsaA in virulence of streptococcus pneumoniae: surface accessibility and role in protection from superoxide. Infect Immun. 72: 5858-5867
Jurtshuk P Jr, Mueller TJ, and Acord WC (1975) Bacterial terminal oxidase. CRC Crit Rev Microbiol. 3:399-468
Kahn RA, Bak S, Svendsen I, Halkier BA, and Moller BL (1997) Isolation and reconstitution of cytochrome P450ox and in vitro reconstitution of the entire biosynthetic pathway of the cyanogenic glucoside dhurrin from sorghum. Plant Physiol. 115:1661-1670
Kato Y, R Ooi, and Y Asano (1998) Isolation and characterization of a bacterium possessing a novel aldoxime-dehydration activity and nitrile- degrading enzymes. Arch Microbiol. 170:85–90
Kato Y, Tsuda T, and AsanoY (1999) Nitrile hydratase involved in aldoxime metabolism from Rhodococcus sp.strain YH3-3. Eur J Biochem. 263:662-670
Kato Y, Ooi R, and Asano Y (2000) Distribution of aldoxime dehydratase in microorganisms. Appl Environ Microbiol. 66:2290-2296
Kato Y, and Asano Y (2005) Purification and characterization of aldoxime dehydratase of the head blight fungus, Fusarium graminearum. Biosci Biotechnol Biochem. 69:2254-2257
Kato Y, and Asano Y (2005) Molecular and enzymatic analysis of the "aldoxime-nitrile pathway" in the glutaronitrile degrader Pseudomonas sp. K-9. Appl Microbiol Biotechnol. 8:1-10
Kao CM, Chen KF, Liu JK, Chou SM, and Chen SC (2005) Enzymatic degradation of nitriles by Klebsiella oxytoca. Appl Microbiol Biotechnol 24:1-6
Kao CM, Liu JK, Lou CS, and Chen SC (2003) Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca. Chem. 50:1055-1061
Kelly M (1968) The kinetics of the reduction of isocyanides, acetylenes and the cyanide ion by nitrogenase preparation from Azotobacter chroococcum and the effects of inhibitors. Biochem J. 107:1-6
Kim YG (2004) Collaborative effects of Photobacterium CuZn superoxide dismutase (SODs) and human AP endonuclease in DNA repair and SOD-deficient Escherichia coli under oxidative stress. Free Radic Biol Med. 36:173 – 179
Kim, S J, Ishikawa K, Hirai M, and Shoda M (1995) Characteristics of a newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes. J Ferment Bioeng. 79:601–607
Kim SY, Nishioka M, and Taya M (2004) Promoted proliferation of an SOD-deficient mutant of Escherichia coli under oxidative stress induced by photoexcited TiO2. FEMS Microbiol Lett. 236:109–114
Klein E, Klein JB, and Thongboonkerd V (2004) Two-dimensional electrophoresis: a fundamental tool for expression proteomics studies. Contrib Nephrol. 141: 25-34
Klein JB, and Thongboonkerd V (2004) Overview of proteomics. Contrib Nephrol. 141: 1-10
Klose, J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik. 26: 231-43.
Knowles CJ (1965) Microorganisms and cyanodes. Bacteriol Rev. 40: 652-680
Knowles CT, (1988) Cyanide utilization and degradation by microorganisms. Ciba Found Symp.140:3-15
Kobayashi M, Nagasawa T, Yamada H (1989) Nitrilase of Rhodococcus rhodochrous J1: purification and characterization. Eur J Biochem 182:349–356
Kobayashi M, Nishiyama M, Nagasawa T, Horinouchi S, Beppu T, and Yamada H (1991) Cloning, nucleotide sequence and expression in Escherichia coli of two cobalt-containing nitrile hydratase genes from Rhodococcus rhodochrous J1. Biochim Biophys Acta.1129:23-33
Kobayashi M, and Shimizu, S (1999) Cobalt proteins. Eur J Biochem. 261:1-9
Kolski GB, and Margerum DW (1968) Kinetics of formation and dissociation of tetracyanonickelate (II) ion. Inorg Chem. 7:2239-2243
Kunz DA, Nagappn O, Silva-Avalos J, and Delong GT (1992) Utilization of cyanide as a nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: evidence for multiple pathways of metabolic conversion. Appl Environ Microbiol.58: 2022-2099
Levy-Schill S, Soubrier F, Crutz-Le Coq A, Faucher D, Crouzet J, and Petre D (1995) Aliphatic nitrilase from a soil isolated Comamonas testoteroni sp. gene cloning and overexpression, purification and primary structure. Gene 161:15–20
Li J, Burgess BK, and Corbin JL, (1982) Nitrogenase reactivity:cyanide as substrate and inhibitor. Biochemistry. 21:4393-4402
Linardi VR, Dias JCT, and Rosa CA (1996) Utilization of acetonitrile and other aliphatic nitriles by a Candida famata strain. FEMS Microbiol Lett. 144:67-71
Liu CH, Lin CS, and Liu JK (1995) Bacteria and cyanide. Chinese Bioscience. 38:27-37
Liu JK, Wu YW, and Hsu CH (1992) Physiological adaptability of a cyanide-utilizing Klebsiella oxytoca strain. Proc Natl Sci Coun., R.O.C. 16:188-193
Lu Z, Min H, and Xia Y (2004) The response of Escherichia coli, Bacillus subtilis, and Burkholderia cepacia WZ1 to oxidative stress of exposure to quinclorac. J Environ Sci Health B. 39:431–441
Maier-Greiner U, Obermaier-Skrobranek B, Estermaier L, Kammerloher W,
38
Freund C, Wulfing C, Burkert U, Matern D, Breur M, Eulitz M, Kufrevioglu O, and Hartmann G (1991) Isolation and properties of a nitrile hydratase from the soil fungus Myrothecium verrucaria that is highly specific for the fertilizer cyanamide and cloning of its gene. Proc Natl Acad Sci USA 88:4260–4264
Materassi R, Balloni W, and Florenano G, (1977) Cyanide reduction by nitrogenase in intact cells of Rhodopseudomonas gelatinosa Molisch. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 132:413-417
Marilyn Schuman Jorns (1979) Mechanism of catalysis by the flavoenzyme oxynitrilase. J Biol Chem. 10:12145-12152
Matthews RG, Sheppard C, and Goulding C (1998) Methylenetetrahydro folate reductase and methionine synthase: biochemistry and molecular biology. Eur J Pediatr. 157:54-59
Mayer O Jr. Simon J, Rosolova H, Hromadka M, Subrt I, and Vobrubova I (2002) The effects of folate supplementation on some coagulation parameters and oxidative status surrogates. Eur J Clin Pharmacol. 58: 1–5
McBride KE, Kenny JW, and Stalker DM, (1986) Metabolism of the herbicide bromoxynil by Klebsiella pneumoniae subsp. Ozaenae. Appl Environ Microbiol. 52:325-330
Mosher JB, and Figueroa L (1996) Biological oxidation of cyanide: a viable treatment option for the minerals processing industry. Min Eng. 9:573-581
Mudder T, and Botz M, (2001) A global perspective of cyanide. In: proceeding of the 2001 AIME/SME annual Meeting and Exhibit, The Society for Mining, Metallurgy, and Exploration, February 26-28, Denver, CO.
Muller D, and Gabriel J (1999) Bacterial degradation of the herbicide bromoxynil by Agrobacterium radiobacter in biofilm. Folia Microbiol 44:377–379
Nagasawa T, Mauger J, and Yamada H, (1990) A novel nitrilase, arylacetonitrilase,
39
of Alcaligenes faecalis JM3 purification and characterization. Eur J Biochem. 194:765-772
Nagasawa T, Nanba H, Ryuno K, Takeuchi K, and Yamada H (1987) Nitrile hydratase of Pseudomonas chlororaphis B23: purification and characterization. Eur J Biochem. 162:691–698
Najafpour G, Younesi H, and Ismail KSK (2004) Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresour Technol. 92: 251-260
Nawaz MS, Chapatwala KD, and Wolfram JH (1989) Degradation of acetonitrile by Pseudomonas putida. Appl Environ Microbiol. 55: 2267-2274
Nawaz MS, Davis JW, Wolfram JH, and Chapatwala KD (1991) Degradation of organic cyanides by Pseudomonas aeruginosa. Appl Biochem Biotechnol 28/29:865–875
O’Farrell, PH (1975) High-resolution two-dimensional electrophoresis of proteins. J Biol Chem. 250: 4007-4021
Oinuma K, Hashimoto Y, Konishi K, Goda M, Noguchi T, Higashibata H, and Kobayashi M (2003) Novel aldoxime dehydratase involved in carbon-nitrogen triple bond synthesis of Pseudomonas chlororaphis B23. Sequencing, gene expression, purification, and characterization. J Biol Chem. 278:29600-29608
Okada M, Fuji K, Hoshino M, Noguchi T, Tsujimura M, Nagashima S, Honda J, Nagamune T, Sasabe H, Inoue Y, and Endo I (1997) Activity regulation of photoreactive nitrile hydratase by nitric oxide. J Am Chem Soc 119:3785–3791
Okai Y, Sato EF, Okai KH, and Inoue M (2004) Effect of endoceine disruptor para-nonylphenol on the cell growth and oxygen radical generation in Escherichia coli mutant cells deficient in catalase and superdioxide dismutase. Free Radic Biol Med. 37: 1412–1418
Oro´ J, and Lazcano-Araujo A (1981) The role of HCN and its derivatives in prebiotic evolution. In Cyanide in Biology. 517-541.
Palmer SAK, Breton MA, Nunno TJ, Sullivan DM, and Surprenant NF (1988)
40
Metal/cyanidecontaining wastes: Treatment technologies. Noyes Data Crop, Park Ridge, NJ
Parthasarathy S (1987) Oxidation of low density lipoprotein by thiol compounds leads to its recognition by the acetyl LDL receptor. Biochim Biophys Acta 917:337–340
Payne MS, Wu S, Fallon RD, Tudor G, Stieglitz B, Turner IM, and Nelson M (1997) A stereoselective cobalt-containing nitrile hydratase. Biochemistry 36:5447-54
Poole RK, and Hill S (1997) Respiratory protection of nitrogenase activity in Azotobacter vinelandii-Roles of theterminal oxidase. Biosci Rep. 17:303-317
Rezende R, Dias J, Ferraz V, and Linardi V (2000) Metabolism of benzonitrile by Cryptococcus sp. UFMG-Y28. J Basic Microbiol. 40:389–392
Sawyer DT, Sugimoto H, and Calderwood TS (1984) Base (O–2, e–, OH–)-induced autoxygenation of organic substrates: a model chemical system for cytochrome P-450-catalyzed monoxygenation and dehydrogenation by dioxygen. Proc Natl Acad Sci USA 81:8025–8027
Schuchmann HP, and Laider KJ (1972) Nitrogen compounds other than nitrous oxide in automobile exhaust gas. J Air Pollut Control Assoc 22:52-53
Sexton AC, and Howlett BJ, (2000) Characterisation of cyanide hydratase gene in the phytopathogenic fungus Leptosphaeria maculans. Mol Gen Genet. 263:463-470
Smyk-Randall EM, and Brown OR (1987) A reverse-phase high- performance liquid chromatography assay for dihydroxy-acid dehydratase. Anal Biochem. 164:434-438
Sprent JI, and Sprent P (1990) Nitrogen Fixation Organisms. London & New York: Chapman & Hell
Stevenson J, Botz M, Mudder T, Wilder A, Richins R, and Burdett B, (1995) Cyanisorb recovers cyanide. Min Env Manage. 3:9
Stalker D, Malyj L, and McBride K (1988) Purification and properties of a nitrilase specific for the herbicide bromoxynil and corresponding nucleotide sequence analysis of the bxn gene. J Biol Chem 263:6310–6314
Starkebaum G, and Harlan JM (1986) Endothelial cell injury due to copper-catalysed hydrogen-peroxide generation from homocysteine. J Clin Invest 77:1370–1376
Sugano Y, Ishii Y, and Shoda M (2004) Role of H164 in a unique dye-decolorizing heme peroxidase DyP. Biochem Biophys Res Commun. 322: 126–132
Tabita R, Silver M, and Lundgren DG, (1969) The rhodanese enzyme of Ferrobacillus ferrooxidans(Thiobacillus ferrooxidans). Can J Biochem. 47:1141-1145
Takabatake T, Hasegawa M, Nagano T, and Hirobe M (1990) Toxicities of dicyanobenzofurazans with formation of superoxide in Escherichia coli. Chem Pharm Bull. 38:128-132
Tamburro A, Allocati N, Masulli M, Rotilio D, Dilloi C, and Favaloro B (2001) Bacterial peptide methionine sulphoxide reductase : co-induction with glutathione S-transferase during chemical stress conditions. Biochem J. 360: 675-681
Tamburro A, Robuffo I, Heipieper HJ, Allocati N, Rotilio D, Ilio CD, and Favaloro B (2004) Expression of glutathione S-transferase and peptide methionine sulphoxide reductase in Ochrobactrum anthropi is correlated to the production of reactive oxygen species caused by aromatic substrates. FEMS Microbiol Lett. 241: 151-156
Tauber MM, Cavaco—Paulo A, Robra KH, and Gubitz GM (2000) Nitrile hydratase and amidase for Rhodococcus rhodochrous hydrolyze acrylic fibers and granular polyacrylonitriles. Appl Environ Microbiol. 66:1634-1638
Takagi M, Shirokaze JI, Oishi K, Otsubo K, Yamamoto K, Yoshida N, and Fujimatsu I (1994) Production of S-(+)-ibuprofen with high optical purity from a nitrile compound by cells immobilized on cellulose poprous beads. J Ferment Bioeng. 78:191-93
Thimann K, and Mahadevan S (1964) Nitrilase II, its substrate specificity and
42
possible mode of action. Arch Biochem Biophys. 107:62–68
Trimmer E E, Ballou D P, Ludwig M L, and Matthews R G (2001a) Methylenetetrahydrofolate Reductase from Escherichia coli: Elucidation of the Kinetic Mechanism by Steady-State and Rapid-Reaction Studies. Biochemistry 40: 6205-6215
Trimmer E E, Ballou D P, Ludwig M L, Ludwig M L, and Matthews R G (2001b) Folate Activation and Catalysis in Methylenetetrahydro folate Reductase from Escherichia coli: Roles for Aspartate 120 and Glutamate 28. Biochemistry 40: 6216-6226
Tseng HJ, McEwan AG, Paton JC, and Jennings MP (2002) Virulence of Streptococcus pneumoniae: PsaA Mutants Are Hypersensitive to Oxidative Stress. Infect Immun. 70:1635–1639
Vachek H, and Wood JL, (1972) Purification and properties of mercaptopyruvate sulfur transferase of Escherichia coli. Biochim Biophys Acta. 258:133-146
Vogel AI (1989) Textbook of practical organic chemistry, 5th edn. Longman, New York, pp 1056–1072
Wang P, Matthews DE, and VanEtten HD (1992) Purification and characterization of cyanide hydratase from the phytophathogenic fungus Gloeocercospora sorghi. Arch Biochem Biophys. 298:569-575
Way JL (1983) Mechanism of cyanide intoxication and its antagonism:introduction. Fundam. Appl Toxicol. 3:369
Welinder KG (1992) Superfamily of plant, fungal, and bacterial peroxidases, Curr Opi Struct Biol. 2:388–393
Westermeier, R (1993) Electrophoresis in Practic, 1th ed. VCH
Westley J, Adler H, Westley L, and Nishida C (1983) The sulfur-transferases. Fundam Appl Toxicol. 3:263-272
Wilkins, MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, and Williams KL (1996) Progress with proteome projects: Why all proteins expressed by genome should be identified and how to do it. Biotechnol Genet Eng Rev. 13: 19-50
Wyatt J, and Knowles C (1995) Microbial degradation of acrylonitrile waste effluents: the degradation of effluents and condensates from the manufacture of acrylonitrile. Int Biodeterior Biodegrad 35:227–248
Xing RY, and WhitmanWB (1991) Characterization of enzymes of the branched-chain amino acid biosynthetic pathway in Methanococcus spp. J Bacteriol. 173:2086-2092
Yamada H, and Nagasawa T (1994) Process for biological production of amides with R. rhodochrous J1. US Patent 5334519
Yamada H, Shimizu S, and Kobayashi M (2001) Hydratases involved in nitrile conversion: screening, characterization and application. Chem Rec. 1:152-161
Yamaki T, Olikawa T, Ito K, and Nakamura T (1997) Cloning and sequencing of a nitrile hydratase gene from Pseudonocardia thermophila JCM3095. J Ferment Bioeng 83:474–477
Yamamoto K, Ueno Y, Otsubo K, KawaKami K, and Komatsu K, (1990) Production of S-(+)ibuprofen from a nitrile compound by Acinetobacter sp. strain AK226. Appl Environ Microbiol. 56:3125-3129
Yanase H, Sakamoto A, Okamoto K, and Kita K, (2000) Degradation of the metal-cyano complex tetracyanonickelate(II) by Fusarium oxysporum N-10. Appl Microbiol Biotechnol. 53:328-334
Zakharov SD, and CramerWA (2004) On the mechanism and pathway of colicin import across the E. coli outer membrane. Front Biosci. 9: 1311-1317
Zhang Q, and Riechers D E (2004) Proteomic characterization of herbicide safener-induced proteins in the coleoptile of Triticum tauschii seedlings. Proteomics 4:2058–2071
Zhou CD, and Chin DT (1993) Copper recovery and cyanide destruction with a plating barrel cathode and a packed-bed anode. Plating and Surface Finishing 69-77
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.220.154.41
論文開放下載的時間是 校外不公開

Your IP address is 18.220.154.41
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code