Responsive image
博碩士論文 etd-0906110-141559 詳細資訊
Title page for etd-0906110-141559
論文名稱
Title
奈米壓印抗沾黏層之研究
Study on anti-adhesion layer of nanoimprint
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-21
繳交日期
Date of Submission
2010-09-06
關鍵字
Keywords
抗沾黏層、奈米壓印、原子力顯微鏡
AFM, Anti-adhesion layer, Nanoimprint
統計
Statistics
本論文已被瀏覽 5653 次,被下載 28
The thesis/dissertation has been browsed 5653 times, has been downloaded 28 times.
中文摘要
本研究為奈米壓印探討半節距200nm以下之矽柵型結構模仁與高分子材料(H-PDMS)間的抗沾黏力技術。我們以FIB製作不同深度及寬度之奈米溝槽結構模仁,在這些模仁對於高分子材料H-PDMS作軟微影翻模製程時,為了得到成型性完整的H-PDMS軟模仁,並避免因為其界面間沾黏問題所帶來的模仁缺陷問題,我們需要在矽模仁和PDMS模仁間鍍上一層抗沾黏層。在這裡我們用三種方法鍍上抗沾黏層,分別為:液相浸潤、氣相蒸鍍、摻氟類鑽碳薄膜。其中液相浸潤和氣相蒸鍍使用PFOTCS當作我們的脫模劑,並量測期接觸角以得知其抗沾黏能力;而摻氟類鑽碳薄膜除了使用水的接觸角量測個別樣品的抗沾黏能力外,另外還使用了原子力顯微鏡量測各別薄膜的表面沾黏力、並比較各薄膜水的接觸角大小。以這樣的方式我們可以得到並探討表面沾黏力較小的鍍抗沾黏膜方式,以得到成型性良好的模仁。
Abstract
In this study, it was nanoimprint focused on the anti-adhesion technique between the grating structure silicon molds below 200nm half-pitch and polymer materials (H-PDMS). The nano-groove structure molds with different depths and widths were made by FIB. During the process of molding by soft-lithography, an anti-adhesion layer needed being plated between the silicon and PDMS mold, which was in order to get completely formed H-PDMS soft mold and prevent defective mold caused by the adhesion problem on the surface. There were three kinds of method of plating anti-adhesion layer which were the liquid immersion, vapor deposition, and fluorine doped DLC film. The PFOTCS was used as mold releasing agent in the methods of liquid immersion and vapor deposition, and the contact angle was measured to realize the ability of anti-adhesion. In the method of fluorine doped DLC film, in addition to measuring the anti-adhesion ability for each sample through contact angle with water, the AFM was also applied to measure the degree of adhesion on the surface for each film. And the contact angles with water between each film were also compared. The methods of plating anti-adhesion film with lower degree of adhesion on the surface could be acquired and discussed by means of the above-mentioned ways to fabricate the molds with good formability
目次 Table of Contents
誌謝 I
目錄 II
表目錄 V
圖目錄 VI
中文摘要 IX
Abstract X
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 奈米壓印簡介 2
1.2.2 抗沾黏層的作用力(固態-固態) 3
1.2.2.1 簡介 4
1.2.2.2 共價鍵 8
1.2.2.3 離子鍵 8
1.2.2.4 金屬鍵 9
1.2.2.5 氫鍵 10
1.2.2.6 凡德瓦鍵 11
1.2.3 抗沾黏層的重要性 11
1.2.3.1 液態自組裝 13
1.2.3.2 氣態自組裝 13
1.2.3.3 摻氟類鑽碳薄膜抗沾黏層 14
1.3 研究動機與目的 15
第二章 實驗材料與儀器介紹 16
2.1 實驗儀器 16
2.1.1 場發射型掃描式電子顯微鏡(JEOL-6330 SEM) 16
2.1.2 掃描探針式電子顯微鏡(AFM) 18
2.1.2.1 AFM表面作用力量測原理[15, 50] 20
2.1.2.2 AFM表面作用力量測步驟 24
2.1.2.3 AFM表面作用力量測資料處理 26
2.1.3 接觸角量測 32
2.2 實驗材料 33
2.2.1 脫模劑-PFOTCS 33
2.2.2 H-PDMS 33
第三章 實驗設計 34
3.1 氣相及液相之抗沾黏層脫模效果探討 34
3.1.1 實驗簡介 34
3.1.2 探討項目 34
3.1.3 實驗步驟 35
3.2 摻氟類鑽碳之抗沾黏層脫模效果探討 37
3.2.1 實驗簡介 37
3.2.2 探討項目 37
3.2.3 實驗步驟 37
第四章 實驗結果與討論 40
4.1 液相浸潤和氣相蒸鍍抗沾黏層 40
4.2 摻氟類鑽碳薄膜抗沾黏層 45
4.3 氣相蒸鍍壓印結果以及類鑽碳薄膜和摻氟類鑽碳薄膜壓印結果比較 55
第五章 結論與未來期許 63
5.1 結論 63
5.2 未來期許 64
參考文獻 65
參考文獻 References
參考文獻
1 Terris, B., Stern, J., Rugar, D. and Mamin, H. (1989) Contact electrification using force microscopy. Phys. Rev. Lett. 63, 2669-2672
2 Mate, C. M., Erlandsson, R., McClelland, G. M. and Chiang, S. (1989) Direct measurement of forces during scanning tunneling microscope imaging of graphite. Surf. Sci. 208, 473-486
3 Butt, H. J., Cappella, B. and Kappl, M. (2005) Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports. 59, 1-152
4 Bhushan, B. and Ko, P. L. (2003) Introduction to tribology. Appl. Mech. Rev. 56, B6
5 Adamson, A. W. and Gast, A. P. (1997) Physical chemistry of surfaces. , Wiley New York
6 Bhushan, B. and Chung, Y. (1991) Tribology and mechanics of magnetic storage devices. Journal of Applied Mechanics. 58, 603
7 Tas, N., Sonnenberg, T., Jansen, H., Legtenberg, R. and Elwenspoek, M. (1996) Stiction in surface micromachining. J Micromech Microengineering. 6, 385
8 Maboudian, R. (1998) Surface processes in MEMS technology. Surface Science Reports. 30, 207-269
9 Komvopoulos, K. (2003) Adhesion and friction forces in microelectromechanical systems: Mechanisms, measurement, surface modification techniques, and adhesion theory. J. Adhes. Sci. Technol. 17, 477-517
10 van Spengen, W. M. (2003) MEMS reliability from a failure mechanisms perspective. Microelectronics Reliability. 43, 1049–1060
11 Liu, H. and Bhushan, B. (2003) Nanotribological characterization of molecularly thick lubricant films for applications to MEMS/NEMS by AFM. Ultramicroscopy. 97, 321-340
12 Martin, F. J. and Grove, C. (2001) Microfabricated drug delivery systems: Concepts to improve clinical benefit. Biomed. Microdevices. 3, 97-108
13 Woodley, J. (2001) Bioadhesion: New possibilities for drug administration? Clin. Pharmacokinet. 40, 77-84
14 Beach, E., Tormoen, G., Drelich, J. and Han, R. (2002) Pull-off force measurements between rough surfaces by atomic force microscopy. J. Colloid Interface Sci. 247, 84-99
15 Butt, H., Cappella, B. and Kappl, M. (2005) Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports. 59, 1-152. doi:DOI: 10.1016/j.surfrep.2005.08.003
16 Mahanty, J. and Ninham, B. Dispersion forces. IMA Journal of Applied Mathematics.
17 Sikorski, M. (1964) The adhesion of metals and factors that influence it. Wear. 7, 144-162
18 Bowden, F. and Rowe, G. (1956) The adhesion of clean metals. Proceedings of the Royal Society of London.Series A, Mathematical and Physical Sciences. 233, 429-442
19 Jones, M., Howells, R. and Probert, S. (1968) Solids in static contact. Wear. 12, 225-240
20 McFarlane, J. and Tabor, D. (1950) Relation between friction and adhesion. Proceedings of the Royal Society of London.Series A, Mathematical and Physical Sciences. 202, 244-253
21 Moore, A. and Tabor, D. (1952) Some mechanical and adhesive properties of indium. British Journal of Applied Physics. 3, 299
22 Shackelford, J. F. (2009) Introduction to materials science for engineers. , Prentice Hall
23 Hein, M. and Arena, S. (1991) Foundations of college chemistry. , Brooks/Cole Publishing Company
24 Mittal, K. (1977) The role of the interface in adhesion phenomena. Polym. Eng. Sci. 17, 467-473
25 Davies, D. (1973) Surface charge and the contact of elastic solids. J. Phys. D. 6, 1017
26 Elsdon, R. and Mitchell, F. (1976) Contact electrification of polymers. J. Phys. D. 9, 1445
27 Keller, D. (1963) Adhesion between solid metals. Wear. 6, 353-365
28 Bruning, J. H. (1997) Optical lithography--thirty years and three orders of magnitude: The evolution of optical lithography tools. 3051, 14
29 Resnick, D., Dauksher, W., Mancini, D., Nordquist, K., Bailey, T., Johnson, S., Stacey, N., Ekerdt, J., Willson, C. and Sreenivasan, S. (2003) Imprint lithography for integrated circuit fabrication. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 21, 2624
30 Pamidighantam, S., Laureyn, W., Rusu, C., Baert, K., Puers, R. and Tilmans, H. (2003) A wet release process for fabricating slender and compliant suspended micro-mechanical structures* 1. Sensors and Actuators A: Physical. 103, 202-212
31 Dyck, C. W., Smith, J. H., Miller, S. L., Russick, E. and Adkins, C. (1996) Supercritical carbon dioxide solvent extraction from surface-micromachined micromechanical structures. 2879, 225–235
32 Guckel, H., Sniegowski, J., Christenson, T. and Raissi, F. (1990) The application of fine-grained, tensile polysilicon to mechanicaly resonant transducers. Sensors and Actuators A: Physical. 21, 346-351
33 Douglass, M. and Kozuch, D. (1995) DMD reliability assessment for large-area displays. 26, 49-49
34 Anguita, J. and Briones, F. (1998) HF/H2O vapor etching of SiO2 sacrificial layer for large-area surface-micromachined membranes. Sensors and Actuators A: Physical. 64, 247-251
35 Alley, R., Mai, P., Komvopoulos, K. and Howe, R. Surface roughness modification of interfacial contacts in polysilicon microstructures. , 2–5
36 Ashurst, W. R., Yau, C., Carraro, C., Lee, C., Kluth, G. J., Howe, R. T. and Maboudian, R. (2001) Alkene based monolayer films as anti-stiction coatings for polysilicon MEMS. Sensors and Actuators A: Physical. 91, 239-248
37 Lee, K. K., Cha, N. G., Kim, J. S., Park, J. G. and Shin, H. J. (2000) Chemical, optical and tribological characterization of perfluoropolymer films as an anti-stiction layer in micro-mirror arrays. Thin Solid Films. 377, 727-732
38 Ashurst, W. R., Carraro, C., Maboudian, R. and Frey, W. (2003) Wafer level anti-stiction coatings for MEMS. Sensors and Actuators A: Physical. 104, 213-221
39 Li, M., Chen, L., Zhang, W. and Chou, S. Y. (2003) Pattern transfer fidelity of nanoimprint lithography on six-inch wafers. Nanotechnology. 14, 33
40 Park, S., Padeste, C., Schift, H. and Gobrecht, J. (2003) Nanostructuring of anti-adhesive layers by hot embossing lithography. Microelectronic Engineering. 67, 252-258
41 Beck, M., Graczyk, M., Maximov, I., Sarwe, E. L., Ling, T., Keil, M. and Montelius, L. (2002) Improving stamps for 10 nm level wafer scale nanoimprint lithography. Microelectronic Engineering. 61, 441-448
42 Schreiber, F. (2000) Structure and growth of self-assembling monolayers. Prog Surf Sci. 65, 151-257
43 Wanebo, M., Kobrin, B., Helmrich, F. and Chinn, J. Molecular vapor deposition (MVD TM)–A new method of appling moisture barriers for packaging applications.
44 Mayer, T. M., De Boer, M., Shinn, N., Clews, P. and Michalske, T. (2000) Chemical vapor deposition of fluoroalkylsilane monolayer films for adhesion control in microelectromechanical systems. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 18, 2433
45 Grischke, M., Hieke, A., Morgenweck, F. and Dimigen, H. (1998) Variation of the wettability of DLC-coatings by network modification using silicon and oxygen. Diamond and Related Materials. 7, 454-458
46 Memming, R., Tolle, H. and Wierenga, P. (1986) Properties of polymeric layers of hydrogenated amorphous carbon produced by a plasma-activated chemical vapour deposition process II: Tribological and mechanical properties. Thin Solid Films. 143, 31-41
47 Schvartzman, M., Mathur, A., Hone, J., Jahnes, C. and Wind, S. (2008) Plasma fluorination of carbon-based materials for imprint and molding lithographic applications. Appl. Phys. Lett. 93, 153105
48 Chen, J. K., Ko, F. H., Hsieh, K. F., Chou, C. T. and Chang, F. C. (2004) Effect of fluoroalkyl substituents on the reactions of alkylchlorosilanes with mold surfaces for nanoimprint lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 22, 3233
49 Odom, T. W., Thalladi, V. R., Love, J. C. and Whitesides, G. M. (2002) Generation of 30&#8722;50 nm structures using easily fabricated, composite PDMS masks J. Am. Chem. Soc. 124, 12112 <last_page> 12113. doi:10.1021/ja0209464
50 國家實驗研究院儀器科技研究中心, 奈米檢測技術, ISBN:978-986-81409-4-3
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.22.51.241
論文開放下載的時間是 校外不公開

Your IP address is 3.22.51.241
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code