Responsive image
博碩士論文 etd-0906110-175216 詳細資訊
Title page for etd-0906110-175216
論文名稱
Title
PEMFC碳纖維束單極板之內部結構及膜電極組處理方式對性能影響研究
Studies of the Structure of Carbon Fiber Bunch Unipolar Plates and Treatments of MEA on the Performance of PEMFC
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-28
繳交日期
Date of Submission
2010-09-06
關鍵字
Keywords
MEA、質子交換膜、碳纖維束單極板
carbon fiber bunch unipolar plates, MEA, membrane
統計
Statistics
本論文已被瀏覽 5658 次,被下載 0
The thesis/dissertation has been browsed 5658 times, has been downloaded 0 times.
中文摘要
本論文探討PEMFC 的MEA 處理及碳纖維束單極板內部結構變化對
性能的影響。本文首先探討影響交換膜水變動的因素。燃料電池的陰
極如暴露於大氣的環境中,由於環境的相對溼度常遠低於飽和,MEA
的水會持續蒸發,尤其在無操作的環境時,陰極並無水的產生,若水
持續蒸發,將使交換膜內深層的水,經觸媒層與擴散層擴散到MEA 外
表面,如此會使交換膜內缺乏水分,造成電池操作時,交換膜導氫離
子的能力大為降低。交換膜缺水也會造成膜的縮收,過度的膨脹與縮
收也可能會造成膜與觸媒層間或觸媒層的內部結合較弱的區域剝
離。當剝離發生時,將造成電池無法復原的損壞。
為了使PEMFC 於自然吸氣的操作下能有更好的性能,本論文針對
陰極單極板的碳纖維束做以下的結構變化:1.增加碳纖維束柔軟端高
度,2.堆疊時增加傳導線數量,3.碳纖維束柔軟端鋸齒狀結構。
實驗結果顯示,MEA 經煮稀硫酸處理及使用上述特殊結構碳纖維
束單極板,氫氣進氣壓力0.1bar、自然吸氣及室溫下,功率密度可
達185mW/cm2,相較於無處理及無結構碳纖維束不到80mW/cm2,常溫
泡水及無結構碳纖維束124mW/cm2,功率密度分別比無處理提昇130%
及比泡水處理提昇50%。此外,比較碳纖維束與石墨單極板,結果顯
示,在低進氣壓力時,碳纖維束單極板性能表現明顯優於石墨單極板。
Abstract
In this thesis, the treatments of MEA and the special structures
within carbon fiber bunch unipolar plates on the performance of PEMFC
are studied. At first, the factors affecting on the water content within
MEA will be studied. A passive HFC stack usually exposes in the ambient
no matter that it works or not. However, the ambient is far from saturated.
The water within MEA will vaporize continuously. Especially, if the stack
is shutdown for a long period, there is no water generation in the cathode
and then the membrane will be short in water. If it occurs, the
conductivity of H+ will decrease greatly, and the electrode of MEA is also
possible to separate from its membrane. This separation will make the
performance of the stack an unrecovered decay.
On the other hand, in order to improve the performance of a
air-breathing HFC, the inner structure within cathode carbon fiber bunch
unipolar plates is modified. The structure of the unipolar plates is
modified in the following three aspects: 1. Increasing soft end height of
carbon fiber bunch, 2. Increasing the number of silver-coated wires in
carbon fiber bunch, 3. Cutting several serrated slots on the soft end of
carbon fiber bunch.
In the MEA treatment, firstly, a MEA is boiled in 80oC, 0.5M H2SO4
solution and then boiled in 80oC DI water for an hour, respectively. When
the single-cell HFC operates in hydrogen inlet pressure 0.1 bar,
air-breathing, and room temperature, experimental results display that the
power density of this HFC with the aforementioned treatments and the
special structure of unipolar plates can reach a value about 185mW/cm2.
This value is about 130% higher than that of the untreated MEA and
about 50% higher than that of the treatment of MEA only immersed in DI
water.
In addition, the comparison of the performance of HFC between
with carbon fiber bunch unipolar plates and with graphite unipolar plates
are also studied. The experimental result displays that the performance of
HFC with the carbon fiber bunch unipolar plates is superior to that with
graphite unipolar plates, especially the fuel cell operating under low gas
inlet pressure.
目次 Table of Contents
目錄............................................................................................................. I
圖目錄...................................................................................................... IV
表目錄....................................................................................................VIII
摘要.......................................................................................................... IX
Abstract ......................................................................................................X
第一章 緒論.............................................................................................1
1.1 前言..............................................................................................1
1.2 何謂燃料電池.............................................................................1
1.3 燃料電池發展性.........................................................................2
1.4 文獻回顧......................................................................................4
1.5 研究目的....................................................................................11
第二章 質子交換膜燃料電池工作原理與基本架構............................12
2.1 質子交換膜燃料電池的工作原理............................................12
2.1.1 反應效率.........................................................................15
2.1.2 電池理論燃料消耗量.....................................................16
2.1.3 質子交換膜燃料電池等效電路模型.............................17
2.2 膜電極組(MEA) ...................................................................20
2.2.1 質子交換膜.....................................................................21
2.2.2 電極.................................................................................22
2.2.3 催化劑.............................................................................23
2.3 單雙極板....................................................................................23
2.3.1 傳統硬質表面單/雙極板................................................24
2.3.2 新型非均質碳纖維束單雙極板.....................................25
第三章 元件製作....................................................................................27
3.1MEA 的製作................................................................................27
3.1.1 質子交換膜預處理.........................................................27
3.1.2 電極的預備.....................................................................28
3.1.3MEA 製作方式................................................................28
3.2 新型非均質碳纖維束製程........................................................29
3.2.1 碳纖維束製作.................................................................29
3.2.2 不同結構碳纖維束製作.................................................34
3.3 單Cell 的製作............................................................................35
第四章 實驗方法....................................................................................36
4.1 實驗材料....................................................................................36
4.2 實驗設備....................................................................................36
第五章 實驗結果與分析........................................................................40
5.1 實驗條件....................................................................................40
5.2 測試前處理對性能影響............................................................41
5.3MEA 壓製條件對性能的影響...................................................43
5.3.1 熱壓壓力對性能的影響.................................................43
5.3.2 熱壓前電極有無塗佈Nafion 溶液對性能的影響.......44
5.4MEA 處理方式對含水量及電池性能影響...............................45
5.4.1 質子交換膜與MEA 處理方式對含水量影響..............45
5.4.2 MEA 處理方式Impedance 分析....................................46
5.4.3 MEA 處理方式對性能影響...........................................46
5.5MEA 保存方式對性能的影響...................................................47
5.6 碳纖維束內部結構對性能的影響............................................48
5.6.1 碳纖維束接觸電阻綜合比較.........................................49
5.6.2 碳纖維束高度對性能的影響.........................................50
5.6.3 碳纖維束內部結構對性能的影響.................................50
5.7 碳纖維束單極板供氣方式對性能的影響................................51
5.8 碳纖維束單極板與石墨單極板不同進氣壓力下性能比較...52
第六章 結論...........................................................................................54
參考文獻...................................................................................................56

圖目錄
圖2.1 質子交換膜燃料電池之工作原理示意圖..................................59
圖2.2 質子交換膜燃料電池之等效電路示意圖..................................59
圖 2.3 傳統硬質表面雙極板與MEA 結合示意圖..............................60
圖2.4 非均質碳纖維束雙極板與MEA 結合示意圖...........................60
圖3.1 熱壓前材料預備圖......................................................................61
圖3.2 陰陽電極置於membrane 兩側並固定於隔熱紙.......................61
圖3.3 完成熱壓之MEA.........................................................................62
圖3.4 展開前18K 碳纖維束圓筒.........................................................62
圖3.5 展開前碳纖維黏貼於木箱,並搓開至2cm 寬度.....................63
圖3.6 纖維束展開,共三個單位,每單位2cm 寬,纏繞20 圈.......63
圖3.7 將已展開碳纖維束纏繞在圓桶上,維持碳纖維均勻且無縫隙
...................................................................................................................64
圖3.8 將纏繞碳纖維的圓筒裝上上膠機,準備上膠。......................64
圖3.9 不鏽鋼線沾膠後橫向加膠於薄纖維束上..................................65
圖3.10 剪斷並取下已上膠的5 層纖維束............................................65
圖3.11 製作完成之碳纖維片,長度為4.5cm,寬2cmm ..................65
圖3.12 碳纖維束堆疊前準備材料及模具............................................66
圖3.13 碳纖維堆疊流程........................................................................66
圖3.14 碳纖維束內部結構製作,於同一層纏繞兩條鍍銀線,並繞不
同中心距導桿...........................................................................................67
圖3.15 最後一層碳纖維堆疊好後,將鍍銀線往模具兩端輕靠........67
圖3.16 堆疊完成圖................................................................................67
圖3.17 已堆疊完成之碳纖維放入熱壓模具準備熱壓........................68
圖3.18 熱壓完尚未分割之碳纖維束....................................................68
圖3.19 將碳纖維固定於對切模具上準備對切....................................69
圖3.20 完成對切,尚未修整之碳纖維束............................................69
圖3.21 完成修整之碳纖維束................................................................70
圖3.22 碳纖維束內碳纖維片與導線排列與堆疊剖面示意圖............70
圖3.23 碳纖維束製作內部結構之改善效果........................................71
圖3.24 挖槽之碳纖維束結構示意圖....................................................71
圖3.25 單cell 測試Stack 組件..............................................................72
圖4.1 碳纖維束單極板之接觸電阻量測設備......................................72
圖4.2 碳纖維束單極板與碳布及銅片結合後電阻量測示意圖...........73
圖4.3 碳布與銅片結合後電阻量測示意圖...........................................73
圖4.4 MEA 熱壓設備..............................................................................74
圖4.5 MEA 熱壓模具..............................................................................74
圖4.6 高精密電子磅秤(用以量測質子交換膜及MEA 重量) .......75
圖4.7 電子式加熱器..............................................................................75
圖4.8 電子負載(提供各種不同負載以量測性能) ..........................76
圖4.9 電化學分析儀(Impedance Measurement)..............................76
圖4.10 供氣設備....................................................................................77
圖5.1 MEA 泡水保存後,取出後不同除水步驟對性能影響.............78
圖5.2 MEA 熱壓壓力對性能的影響.....................................................78
圖5.3 熱壓前電極有無塗佈Nafion 溶液對Impedance 的影響.........79
圖5.4 熱壓前電極有無塗佈Nafion 溶液對性能的影響.....................79
圖5.5 質子交換膜與MEA 處理方式對含水量的影響.......................80
圖5.6 MEA 處理方式對Impedance 影響..............................................80
圖5.7 MEA 處理方式對性能影響.........................................................81
圖5.8 Nafion212 於常溫下自然蒸發重量變化百分比.........................81
圖5.9 MEA 保存方式對性能的影響
圖5.10 不同結構碳纖維束與碳布及銅片結合後,總電阻隨結合壓力
之關係.......................................................................................................82
圖5.11 不同結構碳纖維束扣除碳布及銅片電阻後,總電阻隨結合壓
力之關係...................................................................................................83
圖5.12 碳纖維束高度對性能的影響....................................................83
圖5.13 碳纖維束內導線數對性能的影響(碳纖維高度皆為4.5mm)
...................................................................................................................84
圖5.14 陰極單極板碳纖維束內部有無挖槽對性能的影響................84
圖5.15 使用碳纖維束單極板,供氣方式對性能的影響....................85
圖5.16 碳纖維束與石墨單極板,在不同進氣壓力下性能之比較....85
表目錄
表5.1 MEA 泡水保存取出後處理方式對性能及測試前後重量的影響
...................................................................................................................86
表5.2 MEA 保存方式對重量的影響.....................................................87
參考文獻 References
1. “The effect of humidity on the degradation of Nafion membrane,”
Cheng Chen, Thomas F. Fuller, Polymer Degradation and Stability,
94, 1436–1447, 2009.
2. “Membrane electrode assembly degradation by dry/wet gas on a
PEM fuel cell,” Jungtak Kang, Junbom Kim, International journal of
hydrogen energy, xxx, 1–6, 2010.
3. “Effect of water transport properties on a PEM fuel cell operating
with dry hydrogen,” Yinghua Cai, Jun Hu a, Haipeng Ma, Baolian Yi,
Huamin Zhang, Journal of Electrochimica Acta, 51, 6361–6366,
2006.
4. “Electro-osmotic drag coefficient and proton conductivity in Nafion
membrane for PEMFC,” Zhiping Luo, Zhangyong Chang, Yuxia
Zhang, Zhen Liu, Jing Li, International Journal of Hydrogen Energy,
xxx, 1–5, 2009.
5. “The effect of pretreatment methods on the performance of passive
DMFCs,” Beck-Kyun Kho, In-Hwan Oh, Seong-Ahn Hong, Heung
Yong Ha, Journal of Electrochimica Acta, 50, 781–785, 2004.
6. “Fabrication and evaluation of membrane electrodeassemblies by low
-temperature decal methods for directmethanol fuel cells,”
Jae Hyung Cho, Jang Mi Kim, Joghee Prabhuram, Sang Youp Hwang
, Dong June Ahn, Heung Yong Ha, Soo-Kil Kim, Journal of Power
Sources, 187, 378–386, 2009.
7. “Comparative studies of polymer electrolyte membrane fuel cell
stack and single cell,” Deryn Chu, Rongzhong Jiang, J. Power
57
Sources, Vol. 80, pp.226-234, 1999.
8. “Measurements of proton conductivity in the active layer of PEM
fuel cell gas diffusion electrodes,” C. Boyer, S. Gamburzev, O. Velev,
S. Srinivasan, and A. J. Appleby, Electrochimica Acta, Vol. 43, No.
24, 3703-3709, 1998.
9. “Electro osmotic Drag of Water in Poly(perfluorosulfonic acid)
Membranes,” Xiaoming Ren, and Shimshon Gottesfeld, Journal of
The Electrochemical Society, 148(1), A87-A93, 2001.
10. “Bipolar plate made of carbon fiber epoxy composite for polymer
electrolyte membrane fuel cells,” In Uk Hwang, Ha Na Yu, Seong Su
Kim, Dai Gil Lee, Jung Do Suh, Sung Ho Lee, Byung Ki Ahn, Sae
Hoon Kim, TaeWon Lim, Journal of Power Sources, 184, 90–94,
2008.
11. “Air-breathing miniature planar stack using the flexible printed
circuit board as a current collector,” Sung Han Kim, Hye Yeon Cha,
Craig M. Miesse, Jae Hyuk Jang, Yong Soo Oh, Suk Won Cha,
International Journal of Hydrogen Energy, 34, 459–466, 2009.
12. “Bipolar plate materials for solid polymer fuel cell,” D.P. Davies,
Adcock P.L, M.Turpin, S.J Rowen, Journal of Applied
Electrochemistry, 30, 101-105, 2000.
13. “Development of a heterogeneous composite bipolar plate of a
Proton Exchange Membrane Fuel Cell,” Ming-San Lee, Long-Jeng
chen, Zheng-Ru He, Shih-Hong Yang, The Journal of Fuel Cell
Science and Technology, 2005.
14. “Influence of flow field design on the performance of a direct
58
methanol fuel cell,” A.S. Arico, P. Cret, V. Baglio, E. Modica, V.
Antonucci, Journal of Power Sources, 91, 202-209, 2000.
15. “質子交換膜燃料電池於可攜式能源應用之研究,” 王永斌,碩士
論文,國立中山大學機械工程研究所,中華民國九十五年七月。
16. “非均質碳纖維雙極板流道結構及進氣方式對PEMFC性能影響之
實驗研究,” 張耀庭,碩士論文,國立中山大學機械工程研究所,
中華民國九十六年九月。
17. “碳纖維束單/雙極板結構對PEM燃料電池性能影響之探討,” 陳
威呈,碩士論文,國立中山大學機械工程研究所,中華民國九十
八年九月。
18. “質子交換膜燃料電池研究-MEA的製造和性能分析,” 呂俊逸,碩
士論文,國立中山大學機械工程研究所,中華民國八十九年六月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.227.161.226
論文開放下載的時間是 校外不公開

Your IP address is 18.227.161.226
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code