Responsive image
博碩士論文 etd-0906110-204213 詳細資訊
Title page for etd-0906110-204213
論文名稱
Title
應用光電催化效應於奈米二氧化鈦光觸媒披覆玻璃纖維濾網分解丙酮之研究
Applicatiation of Electrical Fiberglass Filter Coated with Nano-sized TiO2 Photocatalyst on Photoelectrocatalytic Degradation of Acetone
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
145
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-05
繳交日期
Date of Submission
2010-09-06
關鍵字
Keywords
L-H反應動力模式、操作參數、TiO2光觸媒、丙酮分解、玻璃纖維電子濾網、光電催化反應
Langmuir-Hinshelwood kinetic model, operation parameters, acetone decomposition efficiency, TiO2 photocatalyst, electrical glassfiber filter, photoelectrocatalytic reaction
統計
Statistics
本論文已被瀏覽 5687 次,被下載 2451
The thesis/dissertation has been browsed 5687 times, has been downloaded 2451 times.
中文摘要
本研究旨在將光電催化分解揮發性有機物(VOCs)技術與玻璃纖維電子濾網吸引技術加以結合,利用外加電場可延遲電子電洞對再結合之特性,並且提高外加電場會增加觸媒表面溫度,更有效率地將VOCs加以分解。本研究測試之VOCs為丙酮,選擇商用TiO2光觸媒(AG-160)以含浸法塗覆於玻璃纖維,並採用批次式光電催化氧化反應系統進行光電催化反應。實驗探討之操作參數包括丙酮初始濃度(50~400 ppm)、電壓強度(0~6,500 V)、水氣含量(0~20,000 ppm)、及反應溫度(40℃~80℃)。光電催化反應器上方置放三支15W近紫外光燈管(λ=365 nm)為光源,內部則放置披覆TiO2之玻璃纖維濾網,丙酮則以氣密式注射針筒(gasket syringe)注入,進行批次光電催化氧化反應實驗。反應物分析係分別以氣相層析儀/電子捕捉偵測器(GC/FID)偵測並定量之,最後進一步建立反應動力模式。
本研究採用商用TiO2光觸媒,所製備之光觸媒玻纖濾網之粒徑範圍介於35~50 nm,屬於奈米微粒。進行三次光觸媒活性重複測試,得知光觸媒經再生後,並不會降低TiO2光觸媒活性,其三次實驗分解丙酮速率趨勢非常相近,由此證明表面披覆的TiO2光觸媒玻纖濾網並未發生毒化現象,而可重複使用。以兩種不同操作條件(PC及PEC)均可光催化氧化丙酮,其中以PEC之光電催化丙酮速率優於PC,顯示光電催化的丙酮分解效率比光催化效應為佳。PEC反應速率隨外加電場的增加其丙酮反應速率提升34%左右。另就操作參數實驗結果得知,隨著外加電場的上升,丙酮分解效率有逐漸上升之趨勢,其中以外加電場2,000 V以上之丙酮分解效率特別顯著,但隨著外加電場強度提昇,光電催化去除效率趨於平緩。
提高丙酮初始濃度至100~400 ppm之間,光電催化分解反應呈現近零階反應,且在此階段斜率差異不大,
表示在不同濃度操作條件下,反應速率相當。在丙酮濃度100 ppm以下,光電催化分解速率隨濃度減少而逐漸變慢,反應呈現近一階反應。提高反應溫度有助於光
催化提升丙酮之分解效率,反應速率隨著反應溫度增加而增加,在光電催化系統中,以60℃分解最佳,溫度過高或過低皆不好。提高水氣含量會降低丙酮之分解效率,其原因是水分子的存在造成與丙酮競爭吸附現象,使丙酮分解效率降低。在此操作參數實驗下,水氣含量不論是PC或者PEC皆以10,000 ppm時為最佳,當水氣含量增至20,000ppm時則出現顯著的抑制現象。
此外,本研究應用Langmuir-Hinshelwood (L-H)反應動力模式,建立丙酮之反應動力模式,模擬在不同反應溫度、丙酮初始濃度及水氣含量下,光電催化分解丙酮之效率。模擬結果顯示,隨著外加電場之電壓及丙酮初始濃度之增加,kLH和 KA 值亦隨之提高。實驗值與
模擬值均相當吻合,同時也成功模擬光催化氧化丙酮反應速率。因此,氣相丙酮在TiO2表面的光電催化反應速率,亦可使用L-H 反應動力模式加以描述。
Abstract
The study combined photoelectrocatalytic technology (PEC) with electrical glassfiber filter (EGF) to decompose volatile organic compounds (VOCs). External electrical voltage was applied to retard the
recombination of electron-electron hole pairs and increase the surface temperature of the photocatalysts coated on the electrical glassfiber filter,
which could further decompose VOCs more effectively via photoelectrocatalytic technology. Acetone was selected as the gasous pollutant for this particular study. A commercial TiO2 photocatalyst
(AG-160) was coated on GFF via impregnation to decompose acetone in a batch PEC reactor. Operation parameters investigated in this study
included acetone concentration (50~400 ppm), electrical voltage (0~6,500V), water content (0~20,000 ppm), reaction temperature (40℃~80℃).The incident UV light of 365 nm wavelength was irradiated by three
15-wat low pressure mercury lamps (λ=365 nm) placing above the batch PEC reactor. The TiO2-coated EGF was placed at the center of the batch PEC reactor. Acetone was injected into the reactor by a gasket syringe to conduct the PEC decomposition test. Acetone was analyzed quantitatively by a gas chromatography with a flame ionization detector
(GC/FID). Finally, a Langmuir-Hinshelwood kinetic (L-H) model was proposed to simulate the PEC reaction rate of acetone.
Experimental results showed that the size range of the self-produced nano-sized photocatalyst prepared by sol-gel was 35~50 nm. Three duplicate tests of PC and PEC degradation of acetone indicated
that TiO2 was not deactivated during the PC and PCE reactions, hence TiO2 can be reused in the experiments. Results obtained from the PC and PEC degradation experiments indicated that the PEC reaction rate was higher than the PC reaction rate.The PEC reaction rate increased with applied electrical voltage, and the highest decomposition efficiency
occurred at 6,500 V. Electrical field generated by the differences of electrical voltage can effectively enhance the oxidation capability of TiO2 since electron (e-) can be conducted to retard the recombination of electron and electron hole pairs. Both PC and PEC technologies could be used to decompose acetone. Among them, PEC had highter
decomposition efficiency of acetone than PC up to 34%. Rsults obtained from the operation parameter tests reaveled that raising electrical voltage could enhance the decomposition efficiency of acetone only for electrical voltages above 2,000 V. However, the decomposition efficiency of acetone tended to level off as electrical voltage became higher.
Zero-order reaction rate of the PEC reaction was observed for initial acetone concentration of 100~400 ppm, while the PEC reaction decreased gradually for initial acetone concentration reaction below 100 ppm. It revealed that the PEC reaction was pseudo ozero-order for initial acetone concentration of 100~400 ppm, and pseudo first-order reaction for acetone concentration below 100 ppm. Additionally, the PC reaction rate increased with temperature at 45-80℃. However the PEC reaction rate increased with temperature at 45-60℃, and decreased with temperature at 60-80℃. An adsorptive competition between acetone and water molecules at the active sites over TiO2 surface caused either promotion or
inhibition of TiO2 decomposition depending on moisture content . For the PC and PEC reactions, the optimum operating condition of water vapor
concentration was 10,000 ppm, but inhibition occurred when the water vapor concentration increased up to 20,000 ppm.
Finally, the Langmuir-Hinshelwood kinetic model was applied to investiage the influences of reaction temperature, initial concentration of acetone, and water content on the photoelectrocatalytic reaction rate of acetone. Model simulation results showed that photoelectrocatalytic reaction rate constant of acetone(kLH) and adsorptive equilibrium constant(KA) increased with electrical voltage and acetone initial concentration. This study sevealed that experimental and simulated results were in good agreement. Thus, PEC reaction rate of acetone on the surface of TiO2 can be also succesfully simulated by the L-H kinetic model.
目次 Table of Contents
謝誌………………………………………………………… I
中文摘要…………………………………………………… Ⅱ
英文摘要…………………………………………………… IV
目錄………………………………………………………… VII
表目錄……………………………………………………… XI
圖目錄……………………………………………………… XIII
第一章 前言………………………………….……..………….… 1-1
1-1研究緣起……………………………………….…………….. 1-1
1-2研究目的……………………………………….…………….. 1-6
1-3研究範圍……………………………………….…………….. 1-7
第二章 文獻回顧……………………………………………..…. 2-1
2-1 光催化技術之發展趨勢及應用…………………………….. 2-1
2-1-1光觸媒之發展趨勢及應用……………………………... 2-1
2-1-2國內外空氣清靜機之研發情形………………………... 2-4
2-2 光電催化反應原理及特性………………………………….. 2-8
2-2-1 光催化反應基本原理…………..……….…………….. 2-8
2-2-2 光觸媒表面吸附現象…………..……….…………….. 2-12
2-2-3 光電催化反應基本原理………………………………. 2-14
2-3 光觸媒種類及特性……………………………….................. 2-16
2-3-1 光觸媒種類………………..…………………………... 2-16
2-3-2二氧化鈦結構及特性…………………………………. 2-17
2-3-3 二氧化鈦之製備方法…………………………………. 2-22
2-4玻璃纖維濾網概述…………………………………………... 2-28
2-4-1玻璃纖維濾網之製備及組成………………………….. 2-28
2-4-2玻璃纖維濾網之特性…………………….……………. 2-28
2-5影響光電催化反應參數………………………....................... 2-29
2-5-1 電壓強度之影響………………………………………. 2-29
2-5-2 反應物濃度之影響……………………………………. 2-30
2-5-3 水氣含量之影響…………….………………………… 2-31
2-5-4 光觸媒之改質…………………………………………. 2-33
2-5-4-1摻入氧化物改質…………………………….… 2-33
2-5-4-2摻入金屬原子改質……………………………. 2-35
2-5-5 溫度之影響……………………………………………. 2-36
2-6丙酮之特性及危害………………………………................... 2-37
2-7光催化反應動力模式……………………………................... 2-39
2-7-1 一階反應動力步驟…………………………………... 2-39
2-7-2 光電催化反應動力步驟……….….………………..... 2-40
2-7-3 等溫吸附模式….…….…………................................. 2-42
2-7-4 反應動力模式………………………………………... 2-43
第三章 研究方法………………………………………………... 3-1
3-1實驗材料及製備方法……………………………………....... 3-1
3-1-1 實驗材料……….……….………………..................... 3-1
3-1-2 二氧化鈦光觸媒塗覆方法…….…………………...... 3-4
3-2實驗設備……………………………………………………... 3-5
3-2-1 光電催化反應系統………………………………...… 3-5
3-2-2 反應物及產物分析系統……………………………... 3-6
3-3光電催化分解實驗規劃………….………..………................ 3-7
3-3-1 操作參數及範圍……………………………………... 3-7
3-3-2 反應器測漏測試……………………………………... 3-7
3-3-3 光觸媒活性重複測試………………………………... 3-7
3-3-4 均相光反應測試……………………………………... 3-8
3-3-5 不照光載體吸附測試………………………………... 3-8
3-3-6 不照光玻纖濾網吸附測試…………………………... 3-9
3-4分析方法…………………………..………............................. 3-9
3-4-1 二氧化鈦特性之分析………..…………..………..…. 3-9
3-4-2 反應物分析…………………………………………... 3-9
3-4-3 品保與品管…………………………………………... 3-10
第四章 結果與討論…………………………………………….. 4-1
4-1光觸媒基本特性分析結果………....………………………. 4-1
4-1-1 表面結構分析結果…………………………………... 4-1
4-1-2 晶相分析結果………………..………………………. 4-3
4-2實驗系統測試結果………………….....………………….... 4-5
4-2-1 反應器測漏測試結果………………………………... 4-6
4-2-2 光觸媒活性重複測試結果…………………………... 4-6
4-2-3 均相光反應測試結果…………………………........... 4-7
4-2-4 不照光反應器吸附測試結果………………………... 4-9
4-2-5 不照光TiO2光觸媒玻纖濾網吸附測試結果………... 4-9
4-2-6 不照光TiO2光觸媒電解背景實驗測試結果……….. 4-11
4-3光電催化和光催化分解丙酮效率之比較…………………. 4-12
4-3-1 光催化分解丙酮效率………………………………... 4-12
4-3-2 光電催化分解丙酮效率……………………………... 4-12
4-3-3 光電催化和光催化分解丙酮效率之比較…………... 4-13
4-3-4 光電催化和光催化分解丙酮效率之經濟效應比較... 4-14
4-4操作參數對光電催化分解丙酮之影響……………………. 4-15
4-4-1 外加電場強度對光電催化分解丙酮之影響………... 4-15
4-4-2 丙酮初始濃度對光電催化分解丙酮之影響………... 4-16
4-4-3 水氣含量對光電催化分解丙酮之影響……………... 4-18
4-4-4 反應溫度對光電催化分解丙酮之影響……………... 4-21
4-5光電催化反應動力模式分析……………………………..... 4-24
第五章 結論與建議…………………………………………….. 5-1
5-1結論…………………………………………………………... 5-1
5-2建議…………………………………………………………... 5-2
參考文獻…………………………………………………… R-1
附錄A 反應物丙酮之分析圖譜……………...................... A-1
附錄B 反應物丙酮之檢量線…………….......................... B-1







參考文獻 References
Adachi, K., Ohta, K., and Mizuno, T., “Photocatalytic Reduction of
Carbon Dioxide to Hydrocarbon Using Copper-loaded Titanium
Dioxide,” Solar Energy, Vol.53, No.2, pp.187-190, 1994.
Anderson, M.A., Yamazaki-Nishida, A., and Cervera-March, S.,
“Photodegradation of Trichloroethylene in the Gas Phase Using
TiO2 Porpous Ceramic Membranes,” in Photocatalytic Purification
and Treatment of Water and Air, Ollis, D.F., Al-Ekabi, H., Eds.,
Elsevier: Amsterdam, pp.405, 1993.
Anderson, C. and Bard A. J., “An Improved Photocatalyst of TiO2/ SiO2
Prepared by a Sol–Gel Synthesis,” J. Phys. Chem. B, Vol.99,
pp.9882-9885, 1995.
Anderson, C. and Bard A.J., “Improved Photocatalytic Activity and
Characterization of Mixed TiO2/SiO2 and TiO2/Al2O3 Materials,” J.
Phys. Chem. B, Vol.101, pp.2611-2616, 1997.
Anpo, M., Yamashita, H., Ikeue, K., Fujii, Y., Zhang, S.G., Ichihashi, Y.,
Park, D.R., Suzuki, Y., Koyano, K., and Tatsumi, T., “Photocatalytic
Reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48
Mesoporous Zeolite Catalysts,” Catalysis Today, Vol.44,
pp.327-332, 1998.
Anpo, M., Yamshita, H., Ichihashi, Y., Fujii, Y.,and Honda, M.,
“Photocatalytic Reduction of CO2 with H2O on Titaniun Oxides
Anchored within Micropores of Zeolite: Effects of the Structure of
the Active Sites and the Addition of Pt,” J. Phys. Chem. B, Vol.101,
pp.2632-2636, 1995.
R-1
Ao, C.H. and Lee,S.C., “Enhancement Effect of TiO2 Immobilized on
Activated Carbon Filter for the Photodegration of Pollutants at
Typical Indoor Air Level,” Applied Catalysis B: Environmental,
Vol.44, pp.191-205, 2003.
Atkinson, R.,“Gas-phase Tropospheric Chemistry of Organic Compounds:
A Review,” Atoms. Environ., Vol.41, pp.200, 2007.
Augugliaro, V., Coluccia, S., Loddo, V., Marchese, L., Martra, G.,
Palmisano, L., and Schiavello, M., “Photocatalytic Oxidation of
Gaseous Toluene Onanatase TiO2 Catalyst: Mechanistic Aspects and
FT-IR Investigation,” Applied Catalysis B:Environmental, Vol.20,
pp.15-27, 1999.
Blanco, J., Avila, P., Bahamonde, A., Alvarez, E., Sanchez, B., and
Romero, M., “Photocatalyic Destruction of Toluene and Xylene at
Gas Phase on a Titania Based Monolithic Catalyst,” Catalysis Today,
Vol.29, pp.437-442, 1996.
Brasquet, C. and Cloirec, P.L., “Adsorption onto Activated Carbon
Fibers :Application to Water and Air Treatments,” Carbon, Vol.35.
No9, pp.1307-1313, 1997.
Cao, L., Huang, A., Spiess, F.J., and Suib, S.L., “Gas-phase Oxidation of
1-Butene Using Nanoscale TiO2 Photocatalysts,” J. Catal. Vol.188,
pp.48-57, 1999.
Coleman, H.M., Vimonses, V., Leslie, G., and Amal, R., “Degradation of
1,4-Dioxane in Water Using TiO2 Based Photocatalytic and
H2O2/UV Processes,” Journal of Hazardous Materials, Vol.146,
pp.496-501, 2007.
R-2
David, A.H., Ronald, J.G., Colin, B.N., and Edward, A.R., “Chemistry,”
Allyn and Bacon, New York, 1986.
d’Hennezel, O., Pichat, P., and Ollis, D. F., “Benzene and Toluene
Gas-phase Photocatalytic Degradation over H2O and HCl Pretreated
TiO2: By-products and Mechanisms,” J. Photochem. Photobiol. A:
Chem. Vol.118, pp.197-204, 1998.
Dibble, L.A. and Raupp, G.B., “Kinetics of the Gas-Solid Heterogeneous
Photocatalytic Oxidation of Trichloroethylene by Near-UV
Illuminated Titanium Dioxide,” Catal. Lett., Vol.4, pp.345, 1990.
Dhananjeyan, M.R. Annapoorani, R., and Renganathan, R., “A
Comparative Study on TiO2 Mediated Photo-oxidation of Uracil,
Thymine, and 6-Methyluracil. J. Photochem. Photobiol,” J.
Photochem. Photobiol. A: Chem., Vol.109, pp.147-153, 1997.
Kim, D.H., and Anderson, M. A., “ Photoelectrocatalytic Degradation of
Formic Acid Using a Porous TiO2 Thin-Film Electrode,” Environ.
Sci. Technol., vol.28, pp. 479-483,1994.
Drissen, M.D. and Grassian, V.H., “Photooxidation of Trichloroethylene
on Pt/TiO2,” J. Phys. Chem. B, Vol.104, pp.1418-1423, 1998.
Falconer, J.L. and Magrini-Bair, K.A., “Photocatalytic and Thermal
Catalytic Oxidation of Acetaldehyde on Pt/TiO2,” J. Catal., Vol.179,
pp.171-178, 1998.
Fogler, H.S., “Elements of Chemical Reaction Engineering,” 3rd ed.
Prentice Hall, 1999.
Fox, M.A. and Dulay, M.T., “Hetergeneous Photocatalysis,” Chem. Rev.,
Vol.93, pp.341-357, 1993.
R-3
Fu, F., Zeltner, W.A., and Anderson, M.A., “The Gas-phase
Photocatalytic Mineralization of Benzene on Porous Titania-based
Catalysts,” Appl. Catal. B: Environ., Vol.6, pp.209-224 , 1995.
Fu, X., Clark, L.A., Zeltner, W.A., and Anderson, M.A., “Effect of
Reaction Temperature and Water Vapor Content on the
Heterogeneous Photocatalytic Oxidation of Ethylene,” Journal
Photochem. Photobiol., Vol.97, pp.181-186 , 1996.
Fu, X., Clark, L.A. Yang, Q. and Anderson, M.A., “Enhanced
Photocatalytic Performance of Titania-based Binary Metal Oxide:
TiO2/SiO2 and TiO2/ZrO2,” Environ. Sci. Technol., Vol.30,
pp.647-653 , 1996.
Ha, H.Y., and Anderson, M.A., “Photocatalytic Degration of Formic Acid
via Metal-Supported Titania,” Journal of Environment Engineering,
Vol.122, pp.217-221, 1996.
Hashimoto, K., Wasada, K., Osaki, M., Shono, E., Adachi, K., Toukai, N.,
Kominami, H., and Kera, Y., “Photocatalytic Oxidation of Nitrogen
Oxides Over Titania-zeolite Composite Catalyst to Remove
Nitrogen Oxides in the Atmosphere,” Applied Catalysis B:
Environmental, Vol.30, pp.429-436, 2001.
Herrmann, J.M., Tahiri, H., Ait-Ichon, Y.Y., Lassaletta, G.,
Gonzalez-Elipe A.R., and Fernandez, A. “Characterization and
Photocatalytic Activity in Aqueous Medium of TiO2 and Ag-TiO2
Coatings on Quartz,” Applied Catal. B: Environ., Vol.13,
pp.219-228, 1997.
R-4
Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W.,
“Environmental Applications of Semiconductor Photocatalysis,”
Chem. Rev., Vol.20, pp.69-96, 1995.
Howe, R.F. and Gratzel, M., “EPR Study of Hydrated Anatase under UV
Irradiation,” J. Phys. Chem., Vol.91, pp.3906, 1987.
Hugenschmidt, M.B., Gamble, L., and Campbell, C.T., “The Interaction
of H2O with a TiO2(110) Surface,” Surf. Sci., Vol.302, pp.329, 1994.
Hung, C.H. and Marinas, B.J., “Role of Chlorine and Oxygen in the
Photocatalytic Degradation of Trichloroethylene Vapor on TiO2
Films,” ES&T, Vol.31, pp.562-568, 1997.
Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemann,D. W.,
“Environmental Applications of Semiconductor Photocatalysis,”
Chem. Rev.,Vol.95, pp.69-96, 1995.
Ibusuki, T. and Takeuchi, K. “Toluene Oxidation on U.V.-irradiated
Titanimn Dioxide with and without O2, NO2, or H2O at Ambient
Temperature,” Atmo. Environ., Vol.20, pp.1711-1715, 1986.
Jacoby, W. A., Blake, D.M., Fennell, J.A., Boulter, J.E., and Vargo, L.M.,
“Hetergeneous Photocatalysis for Control of Volatile Organic
Compounds in Indoor Air,” J.A&WMA, Vol.46, pp.891-898, 1996.
Jacoby, W. A., Blake, D.M., Noble, R.D., and Koval, C.A., “Kinetic of
the Oxidation of Trichlorothylene in Air via Heterogeneous
Photocatalysis,” J. Catal., Vol.157, pp.87-96, 1995.
Jardim, W.F., Aiberic, R.M., Takiyama, M.K., and Huang, C.P.,
“Gas-phase Photocatalytic Destruction of Trichloroethylene Using
UV/TiO2,” The 26th Mid-Atlantic Industrial and Hazardous Waste
Conference, Delaware, USA, 1994.
R-5
Jun. K.Y. and Park,S. B. “Effect of Calcination Temperature and Addition
of Silica, Zirconia, Alumina on the Photocatalytic Activity of
Titania,” Korean J. Chem. Eng., Vol.18 No.6., pp.879-888, 2001.
Kato, K., “Synyhesis of TiO2 Photocatalyst with High Activity by the
Alkoxide Method,” in Photocatalytic Purification and Treatment of
Water and Air, Ollis, D.F., Al-Ekabi, H., Eds., Elsevier: Amsterdam,
pp.809, 1993.
Kim, D.H., and Anderson, M.A., “Photoelectrocatalytic Degradation of
Formic Acid Using a Porous TiO2 Thin-Film Electrode,” Environ.
Sci. Technol., Vol.28 pp.479-483, 1994.
Kim, S., Park, J.K., and Hee-Dong, C., “Pyrolysis Kinetics of Scrap Tire
Rubbers. I: Using DTG and TGA,” J. Environ. Eng., Vol.121,
pp.507-514, 1995.
Kurtz, R.L., Stockbauer, R., Msdey, T.E., Roman, E., and de Segovia, J.,
“Synchrotron Radiation Studies of H2O Adsorption on TiO2(110),”
Sur. Sci., Vol.218, pp.178, 1989.
Ku, Y., Lee, Y.C. and Wang, W.Y.,R., “Photocatalytic Decomposition of
2-Chlorophenol in Aqueous Solution by UV/TiO2 Process with
Applied External Bias Voltage,” Journal of Hazardous Materials,
Vol.138, pp. 350-356, 2006.
Jung, K.Y. and Park, S.B. Appl. Catal. B: Environ., Vol.25, pp.249-256,
2000.
Li, C.H., Hsieh, Y.H., Chiu, W.T., Liu, C.C., and Kao, C.L., “Study on
Preparation and Photocatalytic Performance of Ag/TiO2 and Pt/TiO2
Photocatalysts,” Separation and Purification Technology, Vol.58,
pp.148-151, 2007.
R-6
Liljestand, M. and Sattler, M.L., “Photocatalytic Oxidation Processes for
Indoor Air Pollution,” The 89th Air & Waste Management
Assoication Annual Meeting, June, 1996.
Linsebigler, A.L., Lu, G., and Yates, Jr., J.T., “Photocatalysis on TiO2
Surfaces: Principles, Mechanisms, and Selected Results,” Chemistry
Reviews, Vol.95, pp.735-758, 1995.
Li, J., Li, Zheng,L., L. Xian, Y., and Jin, L., “Fabrication of TiO2/Ti
Electrode by Laser-assisted Anodic Oxidation and its Application on
Photoelectrocatalytic Degradation of Methylene Blue,” Journal of
Hazardous Material, Vol.139, pp. 72-78, 2007.
Luo, Y. and Ollis, D.F., “Heterogeneous Photocatalytic Oxidation of
Trichlorethylene and Toluene Mixture in Air: Kinetic Promotion and
Inhibition, Time-dependent Catalyst Activity,” J. Catal., Vol.163,
pp.1-11, 1996.
Maira, A.J., Yeung, K.L., Soria, J., Coronado, J.M., Belver, C., Lee, C.Y.,
and Augugliaro, V., “Gas-phase Photo-oxidation of Toluene Using
Nanometer-size TiO2 Catalysts,” Applied Catalysis B:Environmental,
Vol.29, pp.327-336, 2001.
Martra, G., Coluccia, S., Marchese, L., Augugliaro, V., Loddo, V.,
Palmisano, L., and Schiavello, M., “The Role of H2O in the
Photocatalytic Oxidation of Toluene in Vapour Phase on Anatase
TiO2 Catalyst A FTIR Study,” Catalysis Today, Vol.53, pp.695-702,
1999.
Martin, S.T., Herrmann, H., Choi, W., and Hoffmann, M.R.,
“Time-resolved Microwave Conductivity,” J. Chem. Soc. Faraday
Trans. I.,Vol.90, pp.3315-3322, 1994.
R-7
Matos, J., Laine J., and Herrmann, J.M., “Synergy Effect in the
Photocatalytic Degradation of Phenol on a Suspended Mixture of
Titania and Activated Carbon,” Applied Catalysis B: Environmental,
Vol.18, pp.281-291, 1998.
Matthews, R.W., “Kinetics of Photocatalytic Oxidation of Organic
Solutesover Titanium Dioxide,” J. Catal., Vol.111, pp.264-272,
1988.
Millard, L., and Bowker, M., “Photocatalytic Water-gas Shift Reaction
at Ambient Temperature,”J. Photochemistry and Photobiology A:
Chemistry, Vol.148, pp.91-95, 2002.
Molinari, E. and Tomellini, M., “Impact of Electron–hole Pair Excitation
on the Kinetics of Exoergic Processes at Metal Surfaces,” Surface
Science, Vol.602, pp.3131-3135, 2008.
Nimlos, M.R., Wolfrum, E.J., Brewer, M.L., Fennell, J.A., and Bintner,
G.B., “Gas-phase Heterogeneous Photocatalytic Oxidation of
Ethanol: Pathways and Kinetic Modeling”, ES&T, Vol.30,
pp.3102-3110, 1996.
Nuida, T., Kanai, N., Hashimoto, K., Watanabe, T., and Ohsaki, H.,
“Enhancement of Photocatalytic Activity Using UV Light Trapping
Effect,” Vacuum, Vol.74, pp.729-733, 2004.
Obee, T.N. and Brown, R.T., “TiO2 Photocatalysis for Indoor Air
Applications: Effects of Humidity and Trace Contaminant Levels on
the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene, ”
ES&T, Vol.29, pp.1223-1231, 1995.
R-8
Obee, T.N. and Hay, S.O., “Effects of Moisture and Temperature on the
Photooxidation of Ethylene on Titania,” ES&T, Vol.31,
pp.2034-2038, 1997.
Pat, M., “From Micro-to Nanomachining-towards the Nanometer ear, ”
Sensor Review., Vol.16 No.2, pp.4-10, 1996.
Papaefthimiou, P., Ioannides, T. and Verykios, X. E. “Performance of
Doped Pt/TiO2 (W6+) Catalysts for Combustion of Volatile Organic
Compounds (VOCs), ” Appl. Catal. B: Environ., Vol.15, pp.75-92,
1998.
Peill, N.J. and Hoffmann, M.R., “Chemical and Physical Characterization
of a TiO2-coated Fiber Optical Cable Reactor,” ES&T, Vol.30,
pp.2806-2812, 1996.
Peral, J. and Ollis, D.F., “Heterogeneous Photocatalytic Oxidation of
Gas-phase Organics for Air Purification: Acetone, 1-Butanol,
Butyraldehyde, Formaldehyde, and m-xylene Oxidation,” J. Catal.,
Vol.134, pp.554, 1992.
Rafael, M.R. and Nelson, C.M., “Relationship between the Formation of
Surface Species and Catalyst Deactivation During the Gas-phase
Photocatalytic Oxidation of Toluene,” Catalysis Today, Vol.40,
pp.353-365, 1998.
Raupp, G.B. and Junio, C.T., “Photocatalytic Oxidation of Oxygenated
Air Toxics,” Appl. Surf. Sci., Vol.72, pp.321-327, 1993.
Reutergardh,L. B. and Iangphasuk, M., “Photocatalytic Decolorization of
Reactive Azo Dye: A Comparison between TiO2 and CdS
Photocatalysis,” Chemosphere, Vol.35, pp.585-596, 1997.
R-9
Sabate, J., Anderson, M.A., Kikkawa, H., Edwards M. and Hill, Jr.,
C.G., “A Kinetic Study of the Photocatalytic Degradation of
3-Chlorosalicylic Acid over TiO2 Membranes Supported on Glass,”
J. Catal., Vol.127, pp.167-177, 1991.
Sauer, M.L. Hale, M.A. and Ollis, D.F., “Heterogeneous Photocatalytic
Oxidation of Dilute Toluene-Chlorocarbon Mixtures in Air,” J.
Photochem. Photobiol. A: Chem., Vol.88, pp.169-178, 1995.
Schiavello, M. and Sclafani, A., “Thermodynamic and Kinetic Aspects
of Photocatalysis,” in Photocatalysis Fundamental and Applications,
edited by Serpone, N. and Pelizztti, E. John Wiley & Sons, New
York, 1989.
Sitkiewitz, S. and Heller, A. “Photocatalytic Oxidation of Benzene and
Stearic Acid on Sol-Gel Derived TiO2 Thin Films Attached to
Glass,” New J. Chem., Vol.20, pp.233-241, 1996.
Turchi, C.S. and Ollis, D.F. “Photocatalytic Degradation of Organic
Water Contaminants: Mechanisms Involving Hydroxyl Radical
Attack,” J. Catalysis,Vol.122, pp.178-192, 1990.
Tada, H., Teranishi, K., Inubushi Y. and Ito, S. “Ag Nanocluster Loading
Effect on TiO2 Photocatalytic Reduction of Bis(2-dipyridyl)disulfide
to 2-Mercaptopyridine by H2O,” Langmuir, Vol.16, pp.3304-3309,
2000.
Venkatachalam, N., Palanichamy, M., and Murugesan, V., “Sol–gel
Preparation and Characterization of Nanosize TiO2: Its
Photocatalytic Performance,” Materials Chemistry and Physics,
Vol.104, pp.454-459, 2007.
R-10
Vorontsov, A.V., Kurkin, E.N., and Savinov, E.N., “ Study of TiO2
Deactivation during Gaseous Acetone Photocatalytic Oxidation,” J.
Catal., Vol.186, pp.318-324, 1999.
Vorontsov, A. V., Kurkin, E.N., and Savinov, E.N., “ Study of TiO2
Deactivation during Gaseous Acetone Photocatalytic Oxidation,” J.
Catal., Vol.141, pp.209-217, 2001.
Wang, K.H., Tsai H.H. and Hsieh, Y.H. “The Kinetics of Photocatalytic
Degradation of Trichloroethylene in Gas Phase over TiO2 Supported
on Glass Bead,” Applied Catal. B: Environ., Vol.17, pp.313-320,
1998.
Wang, W. and Ku, Y., “Photocatalytic Degradation of Gaseous Benzene
in Air Streams by Using an Optical Fiber Photoreactor,” J.
Photochem. Photobiol. A: Chem., Vol.159, pp.47-59, 2003.
Yamashita, H., Fujii.,Y., Ichihashi, Y., Zhang, S.G., Ikeue, K., Park, D.R. ,
Koyano, K., Tatsumi T., and Anpo, M., “Selective Formation of
CH3OH in the Photocatalytic Reduction of CO2 with H2O on
Titanium Oxides Highly Dispersed within Zeolites and Mesoporous
Molecular Sieves,” Catalysis Today, Vol.45, pp.221-227, 1998.
Yoneyama, H., “Titanium Dioxide/Adsorbent Hybrid Photocatalysts for
Photodestruction of Organic Substances of Dilute Concentrations,”
Catalysis Today, Vol.58, pp.133-140, 2000.
Zelmanov, G. and Semiat, R., “Iron(3) Oxide-based Nanoparticles as
Catalysts in Advanced Organic Aqueous Oxidation,” Water
Research, Vol.42, pp.492-298, 2008.
劉國棟,“VOC 管制趨勢展望”,工業污染防治,Vol.48,pp.15-31,
1993。
R-11
吳永俊、袁中新、董正釱、洪崇軒,“以近紫外光/二氧化鈦催化分解
三氯乙烯之研究”,第十三屆空氣污染控制技術研討會論文集,
pp.223-232,1996。
吳永俊,“近紫外光/二氧化鈦光催化分解三氯乙烯之研究”,國立中
山大學環境工程研究所碩士論文,1996。
劉安治,“近紫外光/二氧化鈦光催化分解氣相中低濃度四氯乙烯之操
作參數探討”,國立中山大學環境工程研究所碩士論文,1997。
吳炳佑、陳湘林、蔣孝澈,“二氧化鈦光觸媒膜之製作與應用”,觸媒
與製程,第6 卷,pp.52-68,1997。
林敏男,“半導體業作業環境中揮發性有機化合物氣相層析質譜儀分
析方法建立”,國立清華大學原子科學系碩士論文,1999。
王國華,“以UV/TiO2 程序處理氣相中三氯乙烯之研究”,國立中興大
學環境工程研究所博士論文,1998。
袁中新、吳政峰、蕭德福,“二氧化鈦光觸媒分解含氯有機污染物之
研究(III)-添加微量貴金屬光觸媒提升四氯乙烯去除率及礦化
率並探討對反應產物之影響” , 國科會研究報告, NSC
89-2211-E-110-004,2000。
沈明宗,“實場蓄熱式焚化爐處理排氣中揮發性有機物之操作性能研
究”,國立中山大學環境工程研究所碩士論文,2000。
張書豪及張木彬,“科學園區空氣污染物排放特性之探討”, 國科會
研究報告,2000。
林芝寧,“新竹地區毒性化學物質流布之風險評估”,淡江大學水資源
及環境工程學系碩士論文,2001。
洪楨琳,“溫度與濕度效應對光催化分解苯蒸氣之影響研究”,國立中
山大學環境工程研究所碩士論文,2001。
R-12
張茂豐,“國內半導體製造業及光電產業之產業現狀、製造廢氣污染
來源與排放特性”,環保技術e 報第三期,2003。
顧洋、曾焜煜、吳昌晏,“以TiO2 光觸媒催化程序處理氣相丙酮污染
物反應行為之研究”,第二十一屆空氣污染控制技術研討會論文
集,pp.704-714,2004。
林正良,「奈米科技於傳統產業之應用」,台灣奈米科技,工業技術研
究院 ,2004。
游振煥、周錦富、章裕民、曾厚元,“建物塗裝VOCs 逸散特性之研
究”,第二十一屆空氣污染控制技術研討會,2004。
彭康華、潘湛昌、林治順、廖文波、肖楚民、喬一方,“兩種載體上
的光電催化降解氣相環己烷的研究”,材料導報,Vol.6,pp.52-68,
2004。
吳政峰,“溫度與濕度效應對光催化分解氣相揮發性有機物之影響”,
國立中山大學環境工程研究所博士論文,2005。
行政院環境保護署,“(一般住家)室內空氣品質改善技術指引”,2006。
李怡涵,“釓參雜二氧化鈦的製備及性質測定”,國立中山大學材料科
學研究所博士論文,2006。
吳怡貞,“利用真空濺鍍法製備可見光奈米光觸媒進行丙酮分解之研
究”,國立中山大學環境工程研究所碩士論文,2007。
羅卓卿,“應用二氧化鈦及氧化鋯光觸媒還原二氧化碳之研究”,國立
中山大學環境工程研究所博士論文,2008。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code