Responsive image
博碩士論文 etd-0906111-004231 詳細資訊
Title page for etd-0906111-004231
論文名稱
Title
具溝槽式反射結構設計之彎曲平板波元件開發
Development of FPW Device with Groove Reflection Structure Design
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-30
繳交日期
Date of Submission
2011-09-06
關鍵字
Keywords
氧化鋅壓電薄膜、插入損失、溝槽式反射結構、彎曲平板波、電化學蝕刻停止製程
ZnO piezoelectric thin-film, insertion-loss, groove reflection microstructure, flexural plate-wave, electrochemical etch-stop
統計
Statistics
本論文已被瀏覽 5742 次,被下載 0
The thesis/dissertation has been browsed 5742 times, has been downloaded 0 times.
中文摘要
為了發展出高靈敏度與低損耗之生醫檢測微系統,本論文運用體型微加工製程技術開發出一種具溝槽式反射結構之彎曲平板波(FPW)元件,並探討不同溝槽式反射結構之深度、數量與佈局位置(DGB)對於降低FPW元件之插入損失(Insertion-loss),提升FPW元件之品質因子(Quality factor, Q)與機電耦合係數(Electromechanical coupling coefficient, K2)的影響。本論文所須建立之三個主要關鍵技術模組分別為:(1)具高C軸(002)取向之氧化鋅壓電薄膜濺鍍製程開發,(2)電化學蝕刻停止製程技術開發與(3)具溝槽式反射結構之FPW元件製程整合開發。
在最佳化濺鍍製程參數的條件下(基板溫度為300℃,射頻濺鍍功率為200 W,氬氣/氧氣流量比為30/70),本論文成功開發一種具有高C軸(002)取向之氧化鋅壓電薄膜,其X光繞射(X-ray diffraction, XRD)強度高達50,799 a.u.,且半高寬值(Full width at half maximum, FWHM)僅僅只有0.383°,XRD繞射角度34.357°非常接近其JCPDS值34.422°。另一方面,本論文開發出一種具有三電極結構之電化學蝕刻停止製程系統,可精準控制矽基板蝕刻深度之誤差於1%以內。最後,本論文成功地完成FPW元件之製程整合,包含六道薄膜沉積製程與六道黃光微影製程。經由量測不同溝槽數量、深度與佈局位置之FPW元件特性後發現,本論文所開發之FPW元件中,以溝槽數量為10個 / 深度為6 μm / DGB為50 μm之設計參數下,可呈現出最低之插入損失(-16.258)、最高之Q值(12.76)與最大之K2值(0.1876%),其中心頻率約為114.7 MHz。
Abstract
Utilizing bulk micromachining technology, this thesis aimed to develop a flexural plate-wave(FPW) device with novel groove reflection microstructure for high-sensitivity and low insertion-loss biomedical microsystem applications. The influences of the amount and depth of the groove and the distance between the groove and the boundary of ZnO piezoelectric thin-film (DGB) on the reduction of insertion-loss and the enhancement of quality factor (Q) and electromechanical coupling coefficient (K2) were investigated. Three critical technology modules established in this thesis are including the development of (1) a sputtering deposition process of high C-axis (002) orientation ZnO piezoelectric thin-film, (2) an electrochemical etch-stop technique of silicon anisotropic etching and (3) an integration process of FPW device.
Firstly, under the optimized conditions of the sputtering deposition process (300℃ substrate temperature, 200 W radio-frequency (RF) power and 30/70 Ar/O2 gas flow ratio), a high C-axis (002) orientated ZnO piezoelectric thin-film with a high X-ray diffraction (XRD) intensity (50,799 a.u.) and narrow full width at half maximum (FWHM = 0.383°) can be demonstrated. The peak of XRD intensity of the standard ZnO film occurs at diffraction angle 2θ = 34.422°, which matches well with our results (2θ = 34.357°). Secondary, an electrochemical etch-stop system with three electrode configuration has been established in this research and the etching accuracy can be controlled to less than 1%. Thirdly, this thesis has successfully integrated the main fabrication processes for developing the FPW device which are including six thin-film deposition processes and six photolithography processes. The implemented FPW device with RIE etched groove reflection microstructure presents a low insertion-loss of -12.646 dB, center frequency of 114.7 MHz, Q factor of 12.76 and K2 value of 0.1876%.
目次 Table of Contents
中文審定書...................................................................................................................I
英文審定書..................................................................................................................II
誌謝............................................................................................................................III
中文摘要......................................................................................................................IV
英文摘要......................................................................................................................V
目錄...........................................................................................................................VII
圖次......................................................................................................................IX
表次.......................................................................................................................XI
第一章 緒論..................................................................................................................1
1-1 前言與研究動機.............................................................................................1
1-2 文獻回顧.........................................................................................................3
1-2-1 剪應力(Thickness shear mode, TSM)震盪器...........….......................3
1-2-2 表面聲波(Surface acoustic wave, SAW)感測器.................................4
1-2-3 剪力水平板波(Shear horizontal acoustic plate mode, SH-APM)
感測器.................................................................................................4
1-2-4 彎曲平板波(Flexural plate wace, FPW)感測器..................................5
第二章 FPW元件之材料分析與理論.......................................................................11
2-1 壓電效應於FPW元件之應用………..........................................................11
2-1-1 壓電效應...........................................................................................11
2-1-2 壓電薄膜比較……….............................………………..................13
2-2 氧化鋅壓電薄膜晶格結構與特性……………………………..................14
2-3 氧化鋅壓電薄膜沉積方法與特性分析……………………………..........15
2-3-1 氧化鋅壓電薄膜沉積方法………………………...........................15
2-3-2 反應性射頻磁控濺鍍原理…………………………...................…16
2-3-3 X光繞射分析……………………………………………………....18
2-3-4 掃描式電子顯微鏡分析…………………………….......................20
2-4 交叉指狀電極轉換器(Interdigital transducer, IDT)之介紹與其等效
電路分析理論..........................................................................................…20
2-5 溝槽式反射結構理論…...................................……………………………24
第三章 具溝槽式反射結構設計之FPW元件設計與實驗方法.......................27
3-1 具溝槽式反射結構設計之FPW元件設計………….........................27
3-1-1 具溝槽式反射結構設計之FPW元件光罩佈局設計…....………. 27
3-1-2 具溝槽式反射結構設計之FPW元件光罩佈局設計規範..........…30
3-2 具溝槽式反射結構設計之FPW元件製作……………….............32
3-2-1 具溝槽式反射結構設計之FPW元件製作流程…………….32
3-2-2 具溝槽式反射結構設計之FPW元件製作方法……………......33
第四章 結果與討論....................................................................................................39
4-1 氧化鋅壓電薄膜之材料特性分析...............................................................39
4-1-1 基板溫度對氧化鋅壓電薄膜之影響……………………...............41
4-1-2 射頻濺鍍功率對氧化鋅壓電薄膜之影響…….........………..........43
4-1-3 氬氣/氧氣流量比對氧化鋅壓電薄膜之影響..................................45
4-2 具溝槽式反射結構設計之FPW元件特性量測結果與分析.....................47
4-2-1 溝槽式反射結構對FPW元件特性之影響......................................50
4-2-2 溝槽深度對FPW元件特性之影響..................................................51
4-2-3 溝槽數量對FPW元件特性之影響……………..…………............53
4-2-4 溝槽與氧化鋅薄膜邊界距離(DGB)對FPW元件特性之影響.......54
第五章 結論與未來展望............................................................................................56
5-1 結論...............................................................................................................56
5-2 未來展望.......................................................................................................57
參考文獻......................................................................................................................59
參考文獻 References
[1] 「微機電系統技術與應用」,行政院國家科學委員會精密儀器發展中心出版2003。
[2] D. S. Ballantine, David Stephen, “Acoustic wave sensor: theory, design, and physico-chemical applications,” San Diego, Academic Press, Inc., 1997.
[3] R. W. Cernosek, “An Overview of Acoustic Wave Devices for chemical & biological sensing, Biological Detection, and Materials Characterization,” Solid-State Sensor Lecture, Auburn University, Auburn, AL, 2002.
[4] 李其源,「蝕刻晶片厚度即時監控之新穎方法」,國立台灣大學機械工程研究所博士論文,2004
[5] 吳德春,「薄膜式表面聲波元件之製作與分析」,中原大學電子工程學系碩士論文,2002
[6] D. W. Galipeau, P. R. Story, K. A. Vetelino, R. D. Mileham,“surface acoustic wave microsensors and applications,” Smart Mater. Struct., vol. 6, pp. 658-667, 1997.
[7] A. Pohl, “A review of wireless SAW sensors,” IEEE Trans. Ultras. Ferr. Freq. Contr., vol. 47, pp. 317-332, 2000.
[8] B. Drafts, “Acoustic Wave Technology Sensors,” IEEE Transaction On Microwave Theory and Techniques, vol. 49, no. 4, 2001.
[9] M. I. Rocha-Gaso, C. M. Iborra, A. M. Baides, A. A. Vives, “Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens, “ Sensors, vol. 9, pp. 5740-5769, 2009.
[10] M. J. Velekoop, “Acoustic wave sensors and their technology,” Ultrasonics, vol. 36, pp. 7-14, 1998.
[11] M. E. Motamedi, R. M. White, “Acoustic sensor in semiconductor Sensor,” John Wiely & Sons, Inc., New York, 1994.
[12] M. S. Weinberg, B. T. Cunningham, C. W. Clapp, “Modeling Flexural Plate Wave Device,” J. Microelectromech. Syst., vol. 9, no. 3, pp. 370- 379, 2000.
[13] 林素霞,「氧化鋅薄膜的特性改良及應用之研究」,國立成功大學材料科學及工程研究所博士論文,2003
[14] Y. Yoshino, T. Makino, Y. Katayama and T. Hata, “Optimization of zinc oxide thin film for surface acoustic wave filters by ratio frequency sputtering,” Vacuum 59, pp. 538-545, 2000.
[15] B. T. khuri-Yakub, J. G. Smits, T. Barbee, “Reactive magnetron sputtering of ZnO,” J. Appl. Phys., vol. 52, issue 7, pp. 4772-4774, 1981.
[16] Hong Xiao原著,羅正忠、張鼎張譯,「半導體製程技術導論」,學銘圖書
[17] 汪建民主編,「材料分析」,中國材料科學學會
[18] W.R. Smith, H.M. Gerard, J.H. Collins, T.M. Reeder, H.J. Shaw, “Analysis of Interdigital Surface Wave Transducers by Use of Equivalent Circuit Model,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-17, no. 11, pp. 856-864, 1969.
[19] T. Laurent, F. O. Bastien, J. C. Pommier, A. Cachard, D. Remiens, E. Cattan, “Lamb Wave and plate mode in ZnO/silicon and AlN/silicon membrane Application to sensors able to operate in contact with liduid,” Sensors and Actuators A, Phys., vol. 87, pp. 26-37, 2000.
[20] 余嘉銘,「壓電彎曲平板波生物感測器」,國立中正大學電機工程研究所碩士論文,2003
[21] J. W. Gardner, V. K. Varadan, O. O. Awadelkarim, “Microsensors MEMS and Smart Devices,” John Wiely & Sons, Inc., 2001.
[22] 林俊甫,雙埠表面聲波濾波器的模擬與量測,國立成功大學機械工程學研究所碩士論文,2003
[23] S. G. Joshi, B. D. Zaitsev, I. E. Kuznetsova, “Reflection of Plate Acoustic Waves Produced by a Periodic Array of Mechanical Load Strips or Grooves,” IEEE Trans. Ultras. Ferr. Freq. Contr., vol. 49, no. 12, pp. 1730-1734, 2000.
[24] C. Y. Huang, J. H. Sun, T. T. Wu, “ A two-port ZnO/silicon Lamb wave resonator using phononic crystals,” Appl. Phys. Lett. vol. 97, issue 3, 2010.
[25] R. H. Tancrell and M. G. Holland, “Acoustic surface wave filters, “ Proc. IEEE, pp. 393-409, 1971.
[26] C. R. Aita, A. J. Purdes, K. L. Lad, P.D. Funkenbusch, “The effect of O2 on reactively sputtered zinc oxide,” J. Appl. Phys., vol. 51, issue 10, pp. 5533-5536,
1980.
[27] C. R. Aita, R. J. Lad, T. C. Tisone, “The effect of rf power on reactively sputtered
zinc oxide,” J. Appl. Phys., vol. 51, issue 12, pp. 6405-6410, 1980.
[28] J. B. Lee, H. J. Kim, S. G. Kim, “Deposition of ZnO thin films by magnetron
sputtering for a film bulk acoustic resonator,” Thin Solid Film, vol. 423, pp. 262,
2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.198.180.108
論文開放下載的時間是 校外不公開

Your IP address is 44.198.180.108
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code