Responsive image
博碩士論文 etd-0906111-205913 詳細資訊
Title page for etd-0906111-205913
論文名稱
Title
使用FLO-2D模型之流固耦合三維土石流模擬
A Fluid-solid Coupling 3D Debris Flow Simulation Using FLO-2D Model
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
36
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-12
繳交日期
Date of Submission
2011-09-06
關鍵字
Keywords
FLO-2D、模擬、視覺化、土石流、流固耦合
Debris flow, FLO-2D, simulation, visualization, fluid solid coupling
統計
Statistics
本論文已被瀏覽 5700 次,被下載 1463
The thesis/dissertation has been browsed 5700 times, has been downloaded 1463 times.
中文摘要
現有土石流模擬模型皆為研究土石流影響範圍,缺少三維畫面呈現,且未考慮遭遇土石流時樹木或岩石等固體之作用,而流固耦合所採用之NSE流體演算法未考慮磨擦力與降伏應力等之能量損失,而FLO-2D模型所使用之控制方程式包含流阻、降伏應力與黏滯性之能量損失。有鑑於此,本論文以FLO-2D模型為基礎,重建為三維視覺圖像,並加入流固耦合來處理改善,其中包含流體對固體所造成的速度,與固體作為流體邊界條件使其轉向,同時考慮固體與地表的摩擦力,以及固體間相互碰撞。從流固耦合觀點來看,一般流固耦合皆採用NSE作為流體演算法,其方法較不適合土石流模擬,因此我們採用較適合模擬土石流之FLO-2D,相較之下,本研究多考慮了流阻與降伏應力(yield stress)兩項,可使流體流動行為與流動範圍更符合真實世界之土石流。若以土石流模擬觀點來看,透過流固耦合來模擬土石流,相較其他土石流模擬,本研究多考慮流固間交互作用與固體間碰撞兩項要素,可使土石流遭遇樹木與房屋等固體時,流固體兩者間產生交互作用,解決其他土石流模擬遭遇固體無法產生互動之情況,使其更接近真實土石流。
Abstract
We reconstruct 2D simulation to 3D scene and integrated a fluid-solid coupling based on FLO-2D model. Furthermore we add the friction and bump. From the point of view of fluid-solid coupling, we using the flow resistance and yield stress our proposed method make the fluid behaviour and runout more realistic comparing to other fluid-solid coupling research. Besides, from the point of view of debris flow simulation, we integrate the fluid-solid coupling into the debris flow simulation. And we can handle the bump of debris flow regarding trees, stone or house compared with other debris flow simulation.
目次 Table of Contents
CHAPTER 1 導論 3
CHAPTER 2 文獻探討 5
CHAPTER 3 土石流模擬 8
3.1 流體模擬 9
3.2 流固交互作用 16
3.3 固體模擬 19
CHAPTER 4 實驗與結果 23
CHAPTER 5 結論 27
參考文獻 28
參考文獻 References
[1] A. Robinson-Mosher, R. E. English, and R. Fedkiw, “Accurate tangential velocities for solid fluid coupling,” Eurographics/ ACM SIGGRAPH, pp. 227-236, 2009.
[2] A. Robinson-Mosher, T. Shinar, J. Gretarsson, J. Su, and R. Fedkiw, ”Two-way coupling of fluids to rigid and deformable solids and shells,” ACM Transactions on graphics, vol. 27, no. 3, Article 46:1-9, 2008.
[3] C. Batty, F. Bertails, and R. Bridson, “A fast variational framework for accurate solid-fluid coupling,” ACM transactions on graphics, vol. 26, no. 3, Article 100:1-8, 2007.
[4] C. Oberholzer, and L. Hurni, “Visualization of change in the interactive multimedia Atlas of Switzerland,” Computers & geosciences, vol. 26, no. 1, pp. 37-43, 2000.
[5] D. Naef, D. Rickenmann, P. Rutschmann, and B. W. McArdell, “Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model,” Natural hazards and earth system sciences, vol. 6, no. 1, pp. 155-165, 2006.
[6] D. Rickenmann, D. Laigle, B. W. McArdell, and J. Hu‥bl, “Comparison of 2D debris-flow simulation models with field events,” Computational geosciences, vol. 10, no. 2, pp. 241-264, 2006.
[7] E. Pajorova, L. Hluchy, L. Halada, and P. Sližik, “3D visualization tool for Virtual models of natural disasters,” IEEE Virtual Reality, pp. 37-43, 2007.
[8] FLO Engineering Inc, “FLO-2D users’ manual”, 2006.
[9] F. Wang, and K. Sassa, “Landslide simulation by a geotechnical model combined with a model for apparent friction change,” Physics and chemistry of the earth, vol. 35, no. 3-5, pp. 149-161, 2010.
[10] G. Eran, A. Selle, F. Losasso, and R. Fedkiw, “Coupling water and smoke to thin deformable and rigid shells,” ACM transactions on graphics, vol. 24, no. 3, 2005.
[11] G. Irving, E. Guendelman, F. Losasso, and R. Fedkiw, “Efficient simulation of large bodies of water by coupling two and three dimensional techniques,” ACM transactions on graphics, vol. 25, no. 3, pp. 805-811, 2006.
[12] J. S. O’Brien, P. Y. Julien, and W. T. Fullerton, “Two-dimensional water flood and mudflow simulation,” vol. 119, no. 2, pp. 244-261, 1993.
[13] Khronos, “OpenGL ES,” available at http://www.khronos.org/opengles/
[14] K. Sassa, O. Nagai, R. Solidum, Y. Yamazaki, and H. Ohta, “An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide,” Landslides, vol. 7, no. 3, pp. 219-236, 2010.
[15] L. Claessens, J.M. Schoorl, and A. Veldkamp, “Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: An application for northern New Zealand,” Geomorphology vol. 87, no. 1-2, pp. 16–27, 2007.
[16] M. Carlson, P. J. Mucha, and G. Turk, “Rigid fluid: animating the interplay between rigid bodies and fluid,” ACM transactions on graphics, vol. 23, no. 3, pp. 377–384, 2004.
[17] M. F. Sheridan, C. L. Bloebaum, T. Kesavadas, A.K. Patra, and E. Winer, “Visualization and communication in risk management of landslides,” Transactions of the Wessex Institute, pp. 691-701, 2002.
[18] N. Chentanez, T. G. Goktekin, B. E. Feldman, and J. F. O’Brien, “Simultaneous coupling of fluids and deformable bodies,” ACM SIGGRAPH/Eurographics, pp. 83-89, 2006.
[19] O. Genevaux, A. Habibi, and J.-M. Dischler, “Simulating fluid-solid interaction,” Graphics interface, pp. 31-38, 2003.
[20] O. Hungr, “Numerical modelling of the motion of rapid, flow-like landslides for hazard assessment,” Korean society of civil engineers, vol. 13, no. 4, pp. 281-287, 2009.
[21] R. Stone, “Peril in the Pamirs,” Science, vol. 326, no. 5960, pp. 1614-1617, 2009.
[22] T. Takahashi, H. Ueki, A. Kunimatsu, and H. Fujii, “The simulation of fluid-rigid body interaction,” ACM SIGGRAPH, pp. 266-266, 2002.
[23] X. Huang, and M. H. Garcia, “A Herschel-Bulkley model for mud flow down a slope,” Journal of fluid mechanics, vol. 374, pp. 305-333, 1998.
[24] Z. Zhong, L Chen, H. Cai, and Y. Cao, “Realistic simulation of multi-scale fluid-solid coupling,” Computer-aided industrial design and conceptual design, pp. 523-528, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code