Responsive image
博碩士論文 etd-0906111-225917 詳細資訊
Title page for etd-0906111-225917
論文名稱
Title
以現地化學及生物整治牆處理受有機溶劑污染之地下水
Development of in situ oxidative-barrier and biobarrier to remediate organic solvents-contaminated groundwater
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
146
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-08-29
繳交日期
Date of Submission
2011-09-06
關鍵字
Keywords
現地化學氧化、地下水污染、整治牆、石油碳氫化合物、生物復育、三氯乙烯
Groundwater contamination, Trichloroethylene, Petroleum hydrocarbons, Bioremediation, In-situ chemical oxidation, Barrier
統計
Statistics
本論文已被瀏覽 5695 次,被下載 0
The thesis/dissertation has been browsed 5695 times, has been downloaded 0 times.
中文摘要
地下水被石油碳氫化合物所污染是一個愈趨普遍且嚴重的問題,此碳氫化合物包括汽油添加劑-甲基第三丁基醚(methyl tertiary-butyl ether, MTBE)、苯、甲苯、乙苯及二甲苯[BTEX (benzene, toluene, ethylbenzene和xylenes)]及三甲基苯[TMB (1,2,4-trimethylbnezene及1,3,5-trimethylbenzene)]均會對人體造成危害;而MTBE具有水溶性高、在地下水環境擴散容易及生物分解性較低之特性,苯在厭氧環境中較甲苯、二甲苯及乙苯不易被分解,且已被公告為致癌性物質。此外,含氯有機溶劑[如三氯乙烯(trichloroethylene, TCE)]為地下水中最常見之重質非水相溶液污染物,其對脂類有高溶解力,並且具有低可燃、易爆、低沸點及高蒸氣壓等特性,故大量的被使用於工業製程中。由於不當之管理與處置,含氯有機溶劑成為國內外土壤及地下水污染之主要污染來源之一。
被動式透水性整治牆(passive permeable reactive barrier)由於具有經濟性及環境友善性,目前已是受到矚目的整治選項。本研究目的則分別設計化學及生物透水性整治牆,並發展一種可緩慢持續釋放氧化劑(如過硫酸鹽)或基質之緩釋物質,分別進行石油碳氫化合物及含氯溶劑之處理成效評估。第一部分研究主要為發展釋氧化劑整治牆(in-situ oxidant-releasing wall)處理現地受石油碳氫化合物污染之下水水,(甲基第三丁基醚及苯為本研究目標污染物)污染之地下水。研究主要工作包含設計可緩慢持續釋放過硫酸鹽之氧化劑物質並研究其組成及釋放效率,瞭解長期釋放之特性。此外,並以管柱試驗評估利用釋氧化劑物質現地整治受甲基第三丁基醚及苯污染地下水之可行性。在緩釋氧化劑物質製備實驗之結果顯示,配比為1/1.1/0.24/0.7(過硫酸鈉/水泥/砂/水)之平均釋放速率為7.26 mg/S2O82-/d/g。管柱試驗中,甲基第三丁基醚及苯在操作前期(48 PV前)去除率分別為86-92%及95-99%;操作後期之甲基第三丁基醚及苯去除率分別降至40-56%及85-93%。甲基第三丁基醚之降解副產物-丙酮,於實驗期間被測得。添加二價鐵離子可促進活化過硫酸鹽氧化反應,但過量的二價鐵離子可能會與污染物競爭過硫酸鹽,造成氧化速率降低。第二部分研究之目的為設計生物透水性整治牆,並發展一種可緩慢釋放碳源、氫源及營養物質之基質,以加速三氯乙烯之生物降解。生物透水性整治牆合成之基質結合蔬菜油及生物可分解界面活性劑[simple green, (SG)和卵磷脂],使蔬菜油乳化為較易擴散之緩釋型聚合膠體基質(slow-releasing polycolloid substrate),此結果長期提供微生物厭氧還原脫氯所需之碳源或氫源。研究中50%乳化油為基準,當卵磷脂及SG濃度分別為71mg/L及72 mg/L時,其乳化程度可達100%,顯示該配方為乳化最佳比例。乳化油合成方式則以卵磷脂及SG混合乳化油在乳化均質機攪拌30分鐘所生成之粒徑最小,且界達電位為負值,有利於土壤孔隙間傳輸。若假設透水性反應牆注入之乳化油寬度約3 m,且含水層中無任何微生物反應,則上游三氯乙烯污染物需0.28年方能穿透反應牆。綜合上述結果,發現聚合膠體基質確實可有效促進厭氧生物還原脫氯反應,並消耗硝酸鹽及硫酸鹽。由以上結果顯示緩釋型聚合膠體基質建立之生物透水性整治牆具有下列機制:(1)蔬菜油對於三氯乙烯具吸附性及(2)緩慢釋出氫氣及醋酸鹽促進厭氧還原脫氯作用,並有效攔阻及降解三氯乙烯及其降解副產物,在溶氧消耗促使反應環境處於還原狀態下,加速厭氧脫氯菌群之增長。選用緩釋型物質做為透水性整治牆之填充材可避免持續灌注之高操作費用,在考量成本及效能上,緩釋型化學或生物透水性整治牆極具競爭力,但目前仍缺乏實際應用案例,而本研究結果應可提供將朝模場或實場應用所需之操作參數。
Abstract
Soil and groundwater at many existing and former industrial areas and disposal sites is contaminated by organic solvent compounds that were released into the environment. Organic solvent compounds are heavier than water. When they are released into the subsurface, they tend to adsorb onto the soils and cause the appearance of LNAPL (light nonaqueous phase liquid) and DNAPL (dense nonaqueous phase liquid) pool. The industrial petroleum hydrocarbons (e.g., methyl tertiary-butyl ether, MTBE and benzene) and chlorinated solvent (e.g., trichloroethylene, TCE) are among the most ubiquitous organic compounds found in subsurface contaminated environment. One cost-effective approach for the remediation of the chlorinated solvent and petroleum products contaminated aquifers is the installation of permeable reactive zones or barriers within aquifers. As contaminated groundwater moves through the emplaced reactive zones, the contaminants are removed, and uncontaminated groundwater emerges from the downgradient side of the reactive zones.
The objectives of this study were developed to evaluate the feasibility of applying in-situ chemical oxidation (ISCO) barrier and in-situ slow polycolloid-releasing substrate (SPRS) biobarrier system on the control of petroleum hydrocarbons and chlorinated solvent plume in aquifer. In the ISCO barrier system, it contained oxidant-releasing materials, to release oxidants (e.g., persulfate) contacting with water for oxidating contaminants existed in groundwater. In this study, laboratory-scale fill-and-draw experiments were conducted to determine the compositions ratios of the oxidant-releasing materials and evaluate the persulfate release rates. Results indicate that the average persulfate-releasing rate of 7.26 mg S2O82-/d/g was obtained when the mass ratio of sodium persulfate/cement/sand/water was 1/1.4/0.24/0.7. The column study was conducted to evaluate the efficiency of in situ application of the developed ISCO barrier system on MTBE and benzene oxidation. Results from the column study indicate that approximately 86-92% of MTBE and 95-99% of benzene could be removed during the early persulfate-releasing stage (before 48 pore volumes of groundwater pumping). The removal efficiencies for MTBE and benzene dropped to approximately 40-56% and 85-93%, respectively, during the latter part of the releasing period due to the decreased persulfate-releasing rate. Results reveal that acetone, byproduct of MTBE, was observed and then further oxidized completely. Results suggest that the addition of ferrous ion would activate the persulfate oxidation. However, excess ferrous ion would compete with organic contaminants for persulfate, causing the decrease in contaminant oxidation rates. In the SPRS biobarrier system, the food preparation industry has tremendous experiences in producing stable oil-in-water (W/O, 50/50) emulsions with a uniformly small droplet size. Surfactant mixture (71 mg/L of SL and 72 /L of SG) blending with water could yield a stable and the optimal emulsion was considered the best. The small absolute value of the emulsion zeta potential reduces inter-particle repulsion, causing the emulsion droplets to stick to each other when they collided. Overtime, large masses of flocculated droplets can form which then clog the sediment pores. The results can be used to predict abiotic interactions and distribution of contaminant mass expected after SPRS injection, and thus provides a more accurate estimate of the mass of TCE removed due to enhanced biodegradation. The effect of TCE partitioning to the vegetable oil on contaminant migration rates can be approximated using a retardation factor approach, where 0.28 years through a 3 m barrier. In anaerobic microcosm experiments, result show that SPRS can be fermented to hydrogen and acetate could be used as a substrate to simulate reductive dehalorination. The apparent complete removal of nitrate and sulfate by SPRS addition was likely a major factor that promoted the complete reduction of TCE at later stages of this study. Results from the column experiment indicate that occurrence of anaerobic reductive dechlorination in the biobarrier system can be verified by: (1) the oil: water partition coefficients of dissolved TCE into vegetable oil were be used to predict abiotic interactions and distribution of contaminant mass expected after SPRS injection. (2) The SPRS can ferment to hydrogen and acetate could be used as a substrate to simulate reductive dechlorination. The proposed treatment scheme would be expected to provide a more cost-effective alternative to remediate other petroleum hydrocarbons and chlorinated solvents-contaminated aquifers. Experiments and operational parameters obtained from this study provide an example to design a passive barriers system for in-site remediation.
目次 Table of Contents
謝誌 I
中文摘要 III
Abstract V
List of Contents IX
List of Tables XI
List of Figures XIII
CHAPTER 1 1
Introduction 1
1.1 Background 3
1.2 Objectives 3
CHAPTER 2 Literature Review 5
2.1 Groundwater contamination 7
2.2 Nonaqueous phase liquid 8
2.3 Groundwater remediation technologies 12
2.3.1 Physical processes 13
2.3.2 Chemical processes 16
2.3.2.1 Chemical oxidation overview 16
2.3.2.2 In-situ chemical oxidation of contaminated soil and groundwater using persulftae 22
2.3.3 Bioremediation 25
2.3.3.1 Bioremediation overview 25
2.3.3.2 Reductive dechlorination 28
2.4 Passive permeable reactive barrier system 30
2.4.1 Passive permeable reactive barrier system overview 30
2.4.2 Biobarrier system 34
2.4.3 Biobarrier systems for chlorinated-hydrocarbon contaminated groundwater remediation 38
CHAPTER 3 Materials and Methods 45
3.1 In-situ chemical oxidation (ISCO) barrier system 47
3.1.1 Materials 47
3.1.2 Design of oxidant-releasing materials 47
3.1.3 Evaluation of the released persulfate on groundwater remediation 48
3.1.4 Performance evaluation and sample analysis 50
3.2 In-situ slow polycolloid-releasing substrate (SPRS) biobarrier system 53
3.2.1 Materials 53
3.2.2 Emulsion preparation 53
3.2.3 The experiments of NAPL oil and emulsion inject 55
3.2.4 Batch experiments on TCE sorption to vegetable oil 56
3.2.5 Anaerobic microcosm experiment 57
CHAPTER 4 Results and Discussion 59
4.1 ISCO barrier system 61
4.1.1 Design of oxidant-releasing materials 61
4.1.2 Evaluation of the released persulfate on groundwater remediation 63
4.2 SPRS biobarrier system 77
4.2.1 Emulsion preparation 77
4.2.2 The experiments of NAPL oil and emulsion inject 82
4.2.3 Partitioning of dissolved TCE into vegetable oil 85
4.2.4. Anaerobic microcosm study 87
CHAPTER 5 Conclusions and Recommendations 93
5.1 Conclusions 95
5.1.1 ISCO barrier system 95
5.1.2 SPRS biobarrier system 96
5.2 Recommendations 97
Chapter 6 References 99
參考文獻 References
Abe, Y., Aravena, R., Zopfi, J., Parker, B., Hunkeler, D. (2009) “Evaluating the fate of chlorinated ethenes in streambed sediments by combining stable isotope, geochemical and microbial methods”, Journal of Contaminant Hydrology, 107(1-2), pp.10-21.
ADEQ (Arizona Department of Environmental Quality), (2003) "Superfund programs section site Information.", July
Albergaria, J.T., Alvim-Ferraz, M.D.M., Delerue-Matos, C. (2008) “Soil vapor extraction in sandy soils: Influence of airflow rate”, Chemosphere, 73(9), pp.1557-1561.
Al-Maamari, R.S., Hirayama, A., Sueyoshi, M.N., Abdalla, O.A.E., Al-Bemani, A.S., Islam, M.R. (2009) “The application of air-sparging, soil vapor extraction and pump and treat for remediation of a diesel-contaminated fractured formation”, Energy Sources Part A-Recovery Utilization and Environmental Effects, 31(11), pp.911-922.
Amos, B.K., Daprato, R.C., Hughes, J.B., Pennell, K.D., Loffler, F.E. (2007) “Effects of the nonionic surfactant tween 80 on microbial reductive dechlorination of chlorinated ethenes”, Environmental Science and Technology, 41(5), pp.1710-1716.
An, Y.J. (2004) “Toxicity of benzene, toluene, ethylbenzene, and xylene (BTEX) mixtures to Sorghum bicolor and Cucumis sativus”, Bulletin of Environmental Contamination and Toxicology, 72(5), pp.1006-1011.
Andreoni, V., Gianfreda, L. (2007) “Bioremediation and monitoring of aromatic-polluted habitats”, Applied Microbiology and Biotechnology, 76(2), pp.287-308.
Andreottola, G., Dallago, L., Ferrarese, E. (2008) “Feasibility study for the remediation of groundwater contaminated by organolead compounds”, 165(1-3), pp.488-498.
Anipsitakis, G.P. and Dionysiou, D.D. (2004a) “Transition metal/UV-based advanced oxidation technologies for water decontamination”, Applied Catalysis B: Environmental, 54(3), pp.155-163.
Anipsitakis, G.P., Dionysiou, D.D. (2004b) “Radical generation by the interaction of transition metals with common oxidants”, Environmental Science and Technology, 38(13), pp.3705-3712.
APHA, (American Public Health Association) (2005) “American water works association & water environment federation”, Standard Methods for the Examination of Water and Wastewater, 21st ed., Washington, D.C., USA.
ASTM-International-D422-63 (1998) “Standard test method for particle size analysis of soils.
Aulenta, F., Beccari, M., Majone, M., Papini, M.P., Tandoi, V. (2008a) “Competition for H-2 between sulfate reduction and dechlorination in butyrate-fed anaerobic cultures”, Process Biochemistry, 43(12), pp.161-168.
Aulenta, F., Pera, A., Rossetti, S., Petrangeli, P. and Majone, M. (2007) “Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors”, Water Research, 41, pp.27-38.
Aulenta, F., Fuoco, M., Canosa, A., Papini, M.P., Majone, M. (2008b) “Use of poly-beta-hydroxy-butyrate as a slow-release electron donor for the microbial reductive dechlorination of TCE”, Water Science and Technology, 57(6), pp.921-925.
Azizian, M.F., Istok, J.D., Semprini, L. (2005) “Push-pull test evaluation of the in situ aerobic cometabolism of chlorinated ethenes by toluene-utilizing microorganisms”, Water Science and Technology, 52(7), pp.35-40.
Azizian, M.F., Istok, J.D., Semprini, L. (2007) “Evaluation of the in-situ aerobic cometabolism of chlorinated ethenes by toluene-utilizing microorganisms using push-pull tests”, Journal of Contaminant Hydrology, 90(1-2), pp.105-124.
Azizian, M.F., Behrens, S., Sabalowsky, A., Dolan, M.E., Spormann, A.M., Semprini, L. (2008) “Continuous-flow column study of reductive dehalogenation of PCE upon bioaugmentation with the Evanite enrichment culture”, Journal of Contaminant Hydrology100(1-2), pp.11-21.
Baciocchi, R., Boni, M.R., D’Aprile, L. (2004) “Application of H2O2 lifetime as an indicator of TCE Fenton-like oxidation in soils”, Journal of Hazardous Materials, 107(3), pp.97-102.
Basel, M.D. (2000) “Overview of in situ chemical oxidation: Status and lessons learned”, Proc., 2nd Int. Conf. on Remediation of Chlorinated and Recalcitrant Compounds, Wickramanayake, G.B. Gavaskar, A.R. Gupta, N. eds., Monterey, Calif., pp.117-119.
Berlendis, S., Lascourreges, J.F., Schraauwers, B., Sivadon, P., Magot, M. (2010) “Anaerobic biodegradation of BTEX by original bacterial communities from an underground gas storage aquifer”, Environmental Science and Technology, 44(9), pp.3621-3628.
Birke, V., Burmeier, H., Rosenau, D. (2003) “Permeable reactive barrier technologies for groundwater remediation in Germany: Recent progress and new developments”, Fresenius Environmental Bulletin, 12(6), pp.623-628.
Block, P.A., Brown, R.A., Robinson, D. (2004) “Novel activation technologies for sodium persulfate in situ chemical oxidation”, Proceedings of the 4th International Conference on the Remediation of Chlorinated and Recalcitrant Compounds.
Bob, M.M., Brooks, M.C., Mravik, S.C.., Wood, A.L. (2008) “A modified light transmission visualization method for DNAPL saturation measurements in 2-D models”, Advances in Water Resources, 31(5), pp.727-742.
Boni, M.R., Sbaffoni, S. (2009) “The potential of compost-based biobarriers for Cr(VI) removal from contaminated groundwater: Column test”, Journal of Hazardous Materials, 166(2-3), pp.1087-1095.
Boopathy, R. (2000) “Factors limiting bioremediation technologies”, Bioresource Technology, 74(1), pp.63-67.
Borden, R.C. (2007) “Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier”, Journal of Contaminant Hydrology, 94(1-2), pp.13-33.
Borden, R.C., Goin, R.T., Kao, C.M. (1997) “Control of BTEX migration using a biologically enhanced permeable barrier”, Ground Water Monitoring and Remediation, 17(1), pp.70-80.
Box, G.E.P., Draper, N.R. (1987) “Empirical model-building and response surfaces”, Wiley, New York.
Brown, G.S., Barton, L.L., Thomson, B.M. (2003) “Permanganate oxidation of sorbed polycyclic aromatic hydrocarbons”, Waste Management, 23(8), pp.737-740.
Buxton, G. V., Malone, T. N., Salmon, G. A. (1997) “Reaction of SO •with Fe2+, Mn2+ and Cu2+ in aqueous solution”, Journal of the Chemical Society, Faraday Transactions, 93(16), pp.2893-2897.
Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., (1988) “Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O–) in aqueous solutions”, Journal of Physical and Chemical Reference Data, 17(2), pp.513-886.
Caliman, F.A., Robu, B.M., Smaranda, C., Pavel, V.L., Gavrilescu, M. (2011) “Soil and groundwater cleanup: benefits and limits of emerging technologies”, Clean Technologies and Environmental Policy, 13(2), pp.241-268.
Cameron, M.L., Borden, R.C. (2006) “Enhanced reductive dechlorination in columns treated with edible oil emulsion”, Journal of contaminant hydrology, 87(1-2), pp.54-72.
Chambers, J.E., Wilkinson, P.B., Wealthall, G.P., Loke, M.H., Dearden, R., Wilson, R., Allen, D., Ogilvy, R.D. (2010) “Hydrogeophysical imaging of deposit heterogeneity and groundwater chemistry changes during DNAPL source zone bioremediation”, Journal of Contaminant Hydrology, 118(1-2), pp.43-61.
Chambers, J.E., Wilkinson, P.B., Wealthall, G.P., Loke, M.H., Dearden, R.,Wilson, R., Allen, D., Ogilvy, R.D. (2010) “Hydrogeophysical imaging of deposit heterogeneity and groundwater chemistry changes during DNAPL source zone bioremediation”, Journal of Contaminant Hydrology, 118(1-2), pp.43-61.
Chang, C.T., Chen, B.Y. (2008) “Toxicity assessment of volatile organic compounds and polycyclic aromatic hydrocarbons in motorcycle exhaust”, Journal of Hazardous Materials, 153(3), pp.1262-1269.
Chapelle, F.H. (2000) “The significance of microbial processes in hydrogeology and geochemistry”, Hydrogeology Journal, 33(3), pp.383-391.
Chapman, S.W., Byerley, B.T., Smyth, D.J.A., Mackay, D.M. (1997) “A pilot test of passive oxygen release for enhancement of in situ bioremediation of BTEX-contaminated ground water”, Ground Water Monitoring and Remediation, 17(2), pp.93-105.
Chapman, S.W., Parker, B.L., Cherry, J.A., Aravena, R., Hunkeler, D. (2007) “Groundwater-surface water interaction and its role on TCE groundwater plume attenuation”, Journal of Contaminant Hydrology, 91(3-4), pp.203-232.
Chen, G., Hoag, G.E., Chedda, P., Nadim, F., Woody, B.A., Dobbs, G.M. (2001) “The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton’s reagent”, Journal of Hazardous Materials, 87(1-3), pp.171-186.
Chen, K.F., Kao, C.M., Chen, C.W., Surampalli, R.Y., Lee, M.S. (2010) “Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation”, Journal of Environmental Sciences-China, 22(6), pp.864-871.
Chen, K.F., Kao, C.M., Chen, T.Y., Weng, C.H., Tsai, C.T. (2006a) “Intrinsic bioremediation of MTBE-contaminated groundwater at a petroleum-hydrocarbon spill site”, Environmental Geology, 50(3), pp.439-445.
Chen, K.F., Kao, C.M., Wu, L.C., Surampalli, R.Y., Liang, S.H. (2009) “Methyl tert-butyl ether (MTBE) degradation by ferrous ion-activated persulfate oxidation: feasibility and kinetics studies”, Water Environment Research, 81(7), pp.687-694.
Chen, T.Y., Kao, C.M., Chai, C.T., Chen, C.Y., Hu, T.H., (2006) “Enhanced in situ aerobic bioremediation using oxygen-releasing material: a bench-scale study”, Environmental Technology and Management Conference 2006, Bandung, West Java, Indonesia, September 7-8.
Chen, Y.D., Barker, J.F., Gui, L. (2006b) “A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: A microcosm study”, Journal of Contaminant Hydrology, 96(1-4), pp.17-31.
Cheng, D., Chow, W.L., He, J.Z. (2010) “A Dehalococcoides-containing co-culture that dechlorinates tetrachloroethene to trans-1,2-dichloroethene, ISME Journal, 4(1), pp.88-97.
Chung, H.H., Jung, J., Yoon, J.H., Lee, M.J. (2002) “Catalytic ozonation of PCE by clay from tidal flat sediments”, Catalysis Letters, 78(1–4), pp.77-79.
Corseuil, H.X., Monier, A.L., Fernandes, M., Schneider, M.R., Nunes, C.C., do Rosario, M., Alvarez, P.J.J. (2011) “BTEX plume dynamics following an ethanol blend release: geochemical footprint and thermodynamic constraints on natural attenuation”, Environmental Science and Technology, 45(8), pp.2422-2429.
Coulibaly, K.M., Borden, R.C. (2004) “Impact of edible oil injection on the permeability of aquifer sands”, Journal of Contaminant Hydrology, 71, pp.1-4.
Crimi, M. L. and Taylor, J. (2007) “Experimental evaluation of catalyzed hydrogen peroxide and sodium persulfate for destruction of BTEX contaminants”, Soil and Sediment Contamination, 16(1), pp. 29-45.
Da Silva, M.L.B., Daprato, R.C., Gomez, D.E., Hughes, J.B., Ward, C.H., Alvarez, P.J.J. (2006) “Comparison of bioaugmentation and biostimulation for the enhancement of dense nonaqueous phase liquid source zone bioremediation”, Water Environment Research, 78(13), pp.2456-2465.
Da Silva, M.L.B., Johnson, R.L., Alvarez, P.J.J. (2007) “Microbial characterization of groundwater undergoing treatment with a permeable reactive iron barrier”, Environmental Engineering Science, 24(8), pp.1122-1227.
Darnault, C.J.G., Ghannadi, S.K. (2009) “Fate of environmental pollutants”, Water Environment Research, 81(10), pp.2019-2029.
DeHghi, B., Hodges, A., and Feng, T.H. (2002) “Post-treatment evaluation of Fenton’s reagent in situ chemical oxidation”, Proc., 3rd Int. Conf. on Remediation of Chlorinated and Recalcitrant Compounds, Battelle Press, Monterey, Calif., pp.1195–1204.
Della Rocca, C., Belgiorno, V., Meric, S. (2007) “Overview of in-situ applicable nitrate removal processes”, Desalination, 204(1-3), pp.46-62.
Devi, L.G., Rajashekhar, K.E. Raju, K.S.A., Kumar, S.G. (2011) “Influence of various aromatic derivatives on the advanced photo Fenton degradation of Amaranth dye”, Desalination, 270(1-3), pp.31-39.
Do, S.H., Kwon, Y.J., Kong, S.H. (2010) “Effect of metal oxides on the reactivity of persulfate/Fe(II) in the remediation of diesel-contaminated soil and sand”, Journal of Hazardous Materials, 182(1-3), pp.933-936.
Do, S.H., Kwon, Y.J., Kong, S.H. (2011) “Feasibility study on an oxidant-injected permeable reactive barrier to treat BTEX contamination: Adsorptive and catalytic characteristics of waste-reclaimed adsorbent”, Journal of Hazardous Materials, 191(1-3), pp.19-25.
Dou, J.F., Liu, X., Hu, Z.F., Deng, D. (2008) “Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction”, Journal of Hazardous Materials, 151(2-3), pp.720-729.
Drzyzga, O., Gerritse, J., Dijk, J.A., Elissen, H., Gottschal, J.C. (2001) “Coexistence of a sulphate-reducing Desulfovibrio species and the dehalorespiring Desulfitobacterium frappieri TCE1 in defined chemostat cultures grown with various combinations of sulfate and tetrachloroethene”, Environmental Microbiology, 3(2), 92–99.
Duhamel, M.A. (2005) “Community Structure and dynamics of Anaerobic Chlorinated Ethene-Degrading Enrichment Cultures”, PhD dissertation, University of Toronto, Toronto, Ont.
Dutta, C., Som, D., Chatterjee, A., Mukherjee, A.K., Jana, T.K., Sen, S. (2009) “Mixing ratios of carbonyls and BTEX in ambient air of Kolkata, India and their associated health risk”, Environmental Monitoring and Assessment, 148(1-4), pp.97-107.
Ehlers, G.A., Rose, P.D., (2006) “The potential for reductive dehalogenation of chlorinated phenol in a sulphidogenic environment in in situ enhanced biodegradation”, Water SA, 32(2), pp.243-248.
Farhadian, M., Duchez, D., Vachelard, C., Larroche, C. (2008b) “Monoaromatics removal from polluted water through bioreactors - A review”, Water Research, 42(6-7), pp.1325-1341.
Farhadian, M., Vachelard, C., Duchez, D., Larroche, C. (2008a) “In situ bioremediation of monoaromatic pollutants in groundwater: A review”, Bioresource Technology, Journal of Hazardous Materials, 156(1-3), pp.488-498.
Fenton, H.J.H. (1894) “Oxidation of tartaric acid in presence of iron”, Journal of Chemical Society, 65, pp.889-910.
Freedman, D.L., Gossett, J.M. (1989) “Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions”, Applied and environmental microbiology, 55(9), pp.2144-2151.
Fuller, M.E., Schaefer, C.E., Steffan, R.J. (2009) “Evaluation of a peat moss plus soybean oil (PMSO) technology for reducing explosive residue transport togroundwater at military training ranges under field conditions”, Chemosphere, 77(8), pp.1076-1083.
Geets, J., Borremans, B., Vangronsveld, J., Diels, L., van der Lelie, D. (2005) “Molecular monitoring of SRB community structure and dynamics in batch experiments to examine the applicability of in situ precipitation of heavy metals for groundwater remediation”, Journal of Soils and Sediments, 5(3), pp.149-163.
Geng, C.N., Luo, Q.S., Chen, M.F., Li, Z.Y., Zhang, C.B. (2010) “Quantitative risk assessment of trichloroethylene for a former chemical works in shanghai, China”, Human and Ecological Risk Assessment, 16(2), pp.429-443.
Gensburg, L., Pantea, C., Fitzgerald, E., Stark, A., Kim, N. (2009) “Mortality among former Love Canal residents”, Environmental Health Perspectives, 117(2), pp.209–216.
Gensburg, L., Pantea, C., Kielb, C., Fitzgerald, E., Stark, A., Kim, N., (2009b) “Cancer incidence among former Love Canal residents”, Environmental Health Perspectives, 117(8), pp.1265-1271.
Gibert, O., Ferguson, A.S., Kalin, R.M., Doherty, R., Dickson, K.W., McGeough, K.L., Robinson, J., Thomas, R. (2007) “Performance of a sequential reactive barrier for Bioremediation of coal tar contaminated groundwater”, Environmental Science and Technology, 41(19), pp.6795-6801.
Graillat C., Lepais-Masmejean M., Pichot C. (1990) “Stabilization optimization of aqueous monomer solutions in oil emulsions using the cohesive energy ratio concept”, Journal of Dispersion Science and Technology, 11(5), pp.455-477.
Gusmao, A.D., de Campos, T.M.P., Nobre, M.D.M., Vargas, E.D. (2004) “Laboratory tests for reactive barrier design”, Journal of Hazardous Materials, 110(1-3), pp.105-112.
Haag, W.R., Yao, C.C.D. (1992) “Rate constants for reaction of hydroxyl radicals with several drinking water contaminants”, Environmental Science and Technology 26(6), pp.1005-1013.
Han, Y.L., Kuo, M.C.T., Tseng, I.C., Lu, C.J. (2007) “Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene”, Journal of Hazardous Materials, 148(3), pp.583-591.
Hanaki, K., Nagase, M. and Matsuo, T. (1981) “Mechanism of inhibition caused by long-chain fatty acids in anaerobic digester process”, Biotechnology and Bioengineering, 23(7), pp.1591-1610.
Hao, X., Zhou, M., Xin, Q., Lei, L. (2007) “Pulsed discharge plasma induced Fenton-like reactions for the enhancement of the degradation of 4-chlorophenol in water”, Chemosphere, 66(11), pp.2185-2192.
Hartnik, T., Norli, H.R., Eggen, T., Breedveld, G..D. (2007) “Bioassay-directed identification of toxic organic compounds in creosote-contaminated groundwater”, Chemosphere, 66(3), pp.435-443.
Hatzinger, P.B., Condee, C., McClay, K.R., Togna, A.P. (2011) “Aerobic treatment of N-nitrosodimethylamine in a propane-fed membrane bioreactor”, Water Research, 45(1), pp.254-262.
Hazen, T.C., Chakraborty, R., Fleming, J., Gregory, I.R., Bowman, J.P., Jimenez, L., Zhang, D., Pfiffner, S.M., Brockman, F.J., Sayler, G.S. (2009) “Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE”, Archives of Microbiology, 191(3), pp.221-232.
He, L., Huang, G.H., Lu, H.W. (2011) “Characterization of petroleum-hydrocarbon fate and transport in homogeneous and heterogeneous aquifers using a generalized Uncertainty estimation method”, Journal of Environmental Engineering-ASCE, 137(1), pp.1-8.
Hemsi, P.S., Shackelford, C.D. (2006) “An evaluation of the influence of aquifer heterogeneity on permeable reactive barrier design”, Water Resources Research, 42(3), pp. W03402.
Henderson, A.D., Demond, A.H. (2007) “Long-term performance of zero-valent iron permeable reactive barriers: A critical review”, Environmental_engineering_science, 24(4), pp.401-423.
Hendrickson, E.R., Payne, J.A. Young, R.M. Star, M.G. Perry, M.P. Fahnestock, S. Ellis, D.E. Ebersole, R.C. (2002) “Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe”, Applied and Environmental Microbiology, 68(2), pp.485-495.
Henry, S.M., Hardcastle, C.H., Warner S.D. (2003a) “In chlorinated solvent and DNAPL remediation”, ACS Symposium Series; American Chemical Society: Washington, DC.
Henry, S.M., Hardcastle, C.H., Warner, S.D. (2003b) “Chlorinated solvent and DNAPL remediation: an overview of physical, chemical, and biological processes”, chlorinated solvent and DNAPL remediation innovative strategies for subsurface cleanup, 837, pp.1-20.
Herrmann, S., Kleinsteuber, S., Neu, T.R., Richnow, H.H., Vogt, C. (2008) “Enrichment of anaerobic benzene-degrading microorganisms by in situ microcosms”, FEMS Microbiology Ecology, 63(1), pp.94-106.
Higgins, M.R., Olson, T.M. (2009) “Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation”, Environmental Science and Technology, 43(24), pp. 9432-9438.
Hofman, J., Stein, H.N. (1991) “Destabilization of emulsions through deformation of the droplets”, Journal of Colloid and Interface Science, 147(2), pp.508-516.
Hollender, J., Althoff, K., Mundt, M., Dott, W.G. (2003) “Assessing the microbial activity of soil samples, its nutrient limitation and toxic effects of contaminants using a simple respiration test”, Chemosphere, 53(3), pp.269-275.
House, D. A. (1962) “Kinetics and mechanism of oxidations by peroxydisulfate”, Chemical Reviews, 62(3), pp.185-203.
Hseu, Z.Y., Tsai, H., Hsi, H.C., Chen, Y.C. (2007) “Weathering sequences of clay minerals in soils along a serpentinitic toposequence”, Clays and Clay Miner., 55(4), pp.389-401.
Huang, K. C., Zhao, Z. Q., Hoag, G. E., Dahmani, A. and Block, P. A. (2005) “Degradation of volatile organic compounds with thermally activated persulfate oxidation”, chemosphere, 61(4), pp.511-560.
Huang, K.C., Couttenye, R.A., Hoag, G.E. (2002) “Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE)”, Chemosphere, 49(4), pp.413–420.
Hudak, P.F. (2008) “Configuring passive wells with reactive media for treating contaminated groundwater”, Environmental Progress, 27(2), pp.257-262.
Hunter, W.J. (2001) “Use of vegetable oil in a pilot-scale denitrifying barrier”, Journal of Contaminant Hydrology, 53(1-2), pp.119-131.
Hunter, W.J. (2005) “Injection of innocuous oils to create reactive barriers for bioremediation: Laboratory studies”, Journal of Contaminant Hydrology, 80(1-2), pp.31-48.
Hunter, W.J. (2008) “Remediation of drinking water for rural populations”, In: Follett, R.F., Hatfield, J.L. (eds) Nitrogen in the environment: sources, problems and management. Elsevier Science B.V., Holland, pp.597–621.
Hunter, W.J., Shaner, D.L. (2010) “Biological remediation of groundwater containing both nitrate and atrazine”, Current Microbiology, 60(1), pp.42-46.
Hwang, S., Huling, S. G., Ko, S. (2010) “Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers”, Chemosphere, 78(5), pp.563-568.
Interstate Technology & Regulatory Council (ITRC) (1999) “Regulatory guidance for permeable reactive barriers designed to remediate chlorinated solvents”, Technical/Regulatory Guidance.
Interstate Technology & Regulatory Council (ITRC) (2000a) “Dense non-aqueous phase liquids (DNAPLs): review of emerging characterization and remediation technologies”, Technical/Regulatory Guidance.
Interstate Technology & Regulatory Council (ITRC) (2000b) “Design guidance for application of permeable reactive barriers for groundwater remediation”, Technical/Regulatory Guidance.
Interstate Technology & Regulatory Council (ITRC) (2002) “DNAPL source reduction: facing the challenge”, Technical/Regulatory Guidance.
Interstate Technology & Regulatory Council (ITRC) (2003) “An introduction to characterizing sites contaminated with DNAPLs”, Technical/Regulatory Guidance.
Interstate Technology & Regulatory Council (ITRC) (2004) “Strategies for monitoring the performance of DNAPL source zone remedies”, Technical/Regulatory Guidance.
Interstate Technology & Regulatory Council (ITRC) (2005a) “Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater”, Technical/Regulatory Guidance.
Interstate Technology & Regulatory Council (ITRC) (2005b) “Overview of in situ bioremediation of chlorinated ethene DNAPL source zones”, Technical/Regulatory Guidance.
Interstate Technology & Regulatory Council (ITRC) (2005c) “Permeable reactive barriers: lessons learned/new directions”, Technical/Regulatory Guidance.
Interstate Technology & Regulatory Council (ITRC) (2009a) “Evaluating Natural Source Zone Depletion at Sites with LNAPL”, Technical/Regulatory Guidance.
Interstate Technology & Regulatory Council (ITRC) (2009b) “Evaluating LNAPL remedial technologies for achieving project goals”, Technical/Regulatory Guidance.
Jacobs, J.A. Guertin, J. (2009) “Overview of cleanup design options and treatability testing for in situ remediation of soil and ground water”, The Professional Geologist, 46(4), pp.43-50
Jeen, S.W., Gillham, R.W., Przepiora, A. (2011) “Predictions of long-term performance of granular iron permeable reactive barriers: Field-scale evaluation”, Journal of Contaminant Hydrology, 123(1-2), pp.50-64.
Johnson, D.R., Park, J., Kukor, J.J., Abriola, L.M. (2006) “Effect of carbon starvation on toluene degradation activity by toluene monooxygenase-expressing bacteria”, Biodegradation, 17(5), pp.437-445.
Johnson, P.C., Bruce, C.L., Miller, K.D. (2010) “A practical approach to the design, monitoring, and optimization of in situ MTBE aerobic biobarriers”, Ground Water Monitoring and Remediation, 30(1), pp.58-66.
Jollow, D.J., Bruckner, J.V., McMillan, D.C., Fisher, J.W., Hoel, D.G., Mohr, L.C. (2009) “Trichloroethylene risk assessment: A review and commentary”, Critical Reviews in Toxicology, 39(9), pp.782-797.
Kao, C. M., Chen, C. Y., Chen, S. C., Chien, H. Y., Chen, Y. L. (2008) “Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: Field and microbial evaluation”, Chemosphere, 70(8), pp.1492-1499.
Kao, C.M., Chai, C.T., Liu, J.K., Yeh, T.Y., Chen, K.F., Chen, S.C. (2004a) “Evaluation of natural and enhanced PCP biodegradation at a former pesticide manufacturing plant”, Water Research, 38(3), pp.663-672.
Kao, C.M., Chen, C.S., Tsa, F.Y., Yang, K.H., Chien, C.C., Liang, S.H., Yang, C.A., Chen, S.C. (2010a) “Application of real-time PCR, DGGE fingerprinting, and culture-based method to evaluate the effectiveness of intrinsic bioremediation on the control of petroleum-hydrocarbon plume”, Journal of Hazardous Materials, 178(1-3), pp.409-416.
Kao, C.M., Chen, C.Y., Chen, S.C., Chien, H.Y., Chen, Y.L. (2008b) “Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: Field and microbial evaluation”, Chemosphere, 70(8), pp.1492-1499.
Kao, C.M., Chen, K.F., Chen, Y.L., Chen, T.Y., Huang, W.Y. (2004b) “Biobarrier system for remediation of TCE-contaminated aquifers”, Bulletin of Environmental Contamination and Toxicology, 72(1), pp.
Kao, C.M., Chen, S.C., Su, M.C. (2001) “Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation”, Chemosphere, 44(5), pp.925-934.
Kao, C.M., Chen, S.C., Wang, J.Y., Chen, Y.L., Lee, S.Z. (2003b) “Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies”, Water Research, 37(1), pp.27-38.
Kao, C.M., Chen, Y.L., Chen, S.C., Yeh, T.Y., Wu, W.S. (2003a) “Enhanced PCE dechlorination by biobarrier systems under different redox conditions”, Water Research, 37(20), pp.4885-4894.
Kao, C.M., Chien, H.Y., Surampalli, R.Y., Chien, C.C., Chen, C.Y. (2010b) “Assessing of natural attenuation and intrinsic bioremediation rates at a petroleum-hydrocarbon spill Site: laboratory and field studies”, Journal of Environmental Engineering-ASCE, 136(1), pp.54-67.
Kao, C.M., Huang, K.D., Wang, J.Y., Chen, T.Y., Chien, H.Y. (2008a) “Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: A laboratory and kinetics study”, Journal of Hazardous Materials, 153(3), pp.919-927.
Kao, C.M., Huang, W.Y., Chang, L.J., Chen, T.Y., Chien, H.Y., Hou, F. (2006a) “Application of monitored natural attenuation to remediate a petroleum-hydrocarbon spill site”, Water Science and Technology”, 53(2), pp.321-328.
Kao, C.M., Liu, J.K., Chen, Y.L., Chai, C.T., Chen, S.C. (2005) “Factors affecting the biodegradation of PCP by Pseudomonas mendocina NSYSU”, Journal of Hazardous Materials, 124(1-3), pp.68-73.
Kao, C.M., Yang, L. (2000) “Enhanced bioremediation of trichloroethene contaminated by a biobarrier system”, Water Science and Technology, 42(3-4), pp.429-434.
Kasprzyk-Hordern, B., Zio’ek, M., Nawrocki, J. (2003) “Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment”, Applied Catalysis. B, Environmental, 46(4), pp.639-669.
Khan, F.I., Husain, T., Hejazi, R. (2004) “An overview and analysis of site remediation technologies”, Journal of Environmental Management, 71(2), pp.95-122.
Kielb C.L., Pantea, C.I., Gensburg, L.J., Jansing, R.L., Hwang, S.A., Stark, A.D., Fitzgerald, E.F. (2010) “Concentrations of selected organochlorines and chlorobenzenes in the serum of former Love Canal residents, Niagara Falls, New York”, Environmental Research, 110(3), pp.220-225.
Killian, P. F., Bruell, C. J., Liang, C. J., Marley, M. C. (2007) “Iron (II) activated persulfate oxidation of MGP contaminated soil”, Soil and Sediment Contamination, 16(6), pp.523-537.
Kim, B.H., Baek, K.H., Cho, D.H., Sung, Y., Koh, S.C., Ahn, C.Y., Oh, H.M., Kim, H.S. (2010) “Complete reductive dechlorination of tetrachloroethene to ethene by anaerobic microbial enrichment culture developed from sediment”, Biotechnology Letters, 32(12), pp.1829-1835.
Kim, E.S., Lee, D.H., Yum, B.W., Chang, H.W. (2005) “The effect of ionic strength and hardness of water on the non-ionic surfactant-enhanced remediation of perchloroethylene contamination”, Journal of Hazardous Materials, 119(1-3), pp.195-203.
Kim, G., Lee, S., Kim, Y. (2006) “Subsurface biobarrier formation by microorganism injection for contaminant plume control, Journal of Bioscience and Bioengineering, 101(2), pp.
Kislenko, V.N., Berlin, A.A., Litovchenko, N.V. (1995) “Kinetics of glucose oxidation with persulfate ions, catalyzed by iron salts”, Journal of General Chemistry of the USSR in English Translation, 65(7), pp.96-1092.
Kohfahl, C., Massmann, G., Pekdeger, A. (2009) “Sources of oxygen flux in groundwater during induced bank filtration at a site in Berlin, Germany”, Hydrogeology Journal, 17(3), pp.571-578.
Kolthoff, I. M., Miller, I. K. (1951) “The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium” Journal of the American Chemical Society, 73(7), pp.3055-3059.
Kong, S. H., Watts, R. J., Choi, J. H. (1998) “Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide”, Chemosphere, 37(8), pp.1473-1482.
Kronholm, J., Riekkola, M.L. (1999) “Potassium persulfate as oxidant in pressurized hot water”, Environmental Science and Technology, 33(12), pp.2095-2099.
Kulik, N., Goi, A., Trapido, M., Tuhkanen, T. (2006) “Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil”, Journal of Environmental Management, 78(4), pp.382-391.
Kunukcu, Y.K. (2007) “In situ bioremediation of groundwater contaminated with petroleum constituents using oxygen release compounds (ORCs)”, Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering, 42(7), pp.839-845.
Kuo, Y. C. (2009) “Remediation of petroleum-hydrocarbon contaminated groundwater using oxidant-releasing material”, Thesis of Master of Science, National Sun Yat-sen University, Kaohsiung, Taiwan.
Kusic, H., Peternel, I., Koprivanac, N., Bozic, A.L. (2011) “Iron-activated persulfate oxidation of an azo dye in model wastewater: influence of iron activator type on process optimization”, Journal of Environmental Engineering-ASCE, 137(6), pp.454-463.
LaGrega, M.D., Buckingham, P.L., Evans, J.C., (2001) “Hazardous Waste Management”, second ed. McGraw-Hill, Boston.
Langwaldt, J.H. Puhakka J.A. (2000) “On-site biological remediation of contaminated groundwater: a review”, Environmental Pollution, 107(2), pp.187-197.
Lee, D.M., Lieberman, T.M., Borden, R.C., Beckwith,W., Crotwell, T., Haas, P.E., (2001) “Effective distribution of edible oils-results from five field applications”, In: Wickramanayake, G.B., Gavaskar, A.R., Alleman, B.C., Magar, V.S. (Eds.), Proc. in Situ and on-Site Bioremediation: The Sixth Internal. Sym., San Diego, CA. Battelle Press, Columbus, OH, pp.249-256.
Lee, E.H., Kim, J., Kim, J.Y., Koo, S.Y., Lee, S.D., Ko, K.S., Ko, D.C., Yum, B.W., Cho, K.S. (2010) “Comparison of microbial communities in petroleum-contaminated groundwater using genetic and metabolic profiles at Kyonggi-Do, South Korea”, Earth and Environmental Sciences, 60(2), pp.371-382.
Lee, E.S., Schwartz, F.W. (2007) “Characteristics and applications of controlled-release KMnO4 for groundwater remediation”, Chemosphere, 66(11), pp.2058-2066.
Lee, J.Y., Moon, C.H., Kim, J.H., Oh, B.T. (2007) “Feasibility study of the bio-barrier with biologically-active tire rubbers for treating chlorinated hydrocarbons”, Geosciences Journal, 11(2), pp.131-136.
Lee, M.H., Clingenpeel, S.C., Leiser, O.P., Wymore, R.A., Sorenson, K.S., Watwood, M.E. (2008) “Activity-dependent labeling of oxygenase enzymes in a trichloroethene-contaminated groundwater site”, Environmental Pollution, 153(1), pp.238-246.
Lee, Y.C., Kwon, T.S., Yang, J.S., Yang, J.W. (2007) “Remediation of groundwater contaminated with DNAPLs by biodegradable oil emulsion”, Journal of Hazardous Materials, 140(1-2), pp.340-345.
Lee, Y.C., Lo, S.L., Chiueh, P.T., Liou, Y.H., Chen, M.L. (2010) “Microwave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation”, Water Research, 44(3), pp.886-892.
Lemming, G., Hauschild, M.Z., Chambon, J., Binning, P.J., Bulle, C., Margni, M., Bjerg, P.L. (2010) “Environmental impacts of remediation of a trichloroethene-contaminated site: life cycle assessment of remediation alternatives”, Environmental Science and Technology, 44(23), pp.9163-9169.
Lesser, L.E., Johnson, P.C., Spinnler, G.E., Bruce, C.L., Salanitro, J.P. (2010) “Spatial Variation in MTBE Biodegradation Activity of Aquifer Solids Samples Collected in the Vicinity of a Flow-Through Aerobic Biobarrier”, Ground Water Monitoring & Remediation, 30(2), pp.63-72.
Levin, R., Kellar, E., Wilson, J., Ware, L., Findley, J., Baehr, J. (2000) “Full-scale soil remediation of chlorinated solvents by in situ chemical oxidation”, Proc., 2nd Int. Conf. on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, Calif., Wickramanayake, G.B. Gavaskar, A.R. and Chen, A.S.C. eds., pp.153-159.
Li, J.A., Zhan, H.B., Huang, G.H. (2011) “Applicability of the linearized governing equation of gas flow in porous media”, Transport in Porous Media, 87(3), pp.815-834.
Li, L., Benson, C.H. (2010) “Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers”, Journal of Hazardous Materials, 181(1-3), pp.170-180.
Li, L., Benson, C.H., Lawson, E.M. (2006) “Modeling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers”, Journal of Contaminant Hydrology, 83(1-2), pp.98-121.
Liang, C.J., Huang, C.F., Chen, Y.J. (2008) “Potential for activated persulfate degradation of BTEX contamination”, Water Research, 42(15), pp.4091-4010.
Liang, C.J., Huang, C.F., Mohanty, N., Lu, C.J., Kurakalva, R.M. (2007) “Hydroxypropyl-beta-cyclodextrin-mediated iron-activated persulfate oxidation of trichloroethylene and tetrachloroethylene”, Industrial and Engineering Chemistry Research, 46(20), pp.6466-6479.
Liang, C.J., Bruell, C.J., Marley, M.C., Sperry, K.L. (2003) “Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1, 1, 1-trichloroethane (TCA) in aqueous systems and soil slurries.” Soil and Sediment Contamination, 12(2), pp.207-228.
Liang, C.J. Guo, Y.Y., Chien, Y.C., Wu, Y.J. (2010) “Oxidative degradation of MTBE by pyrite-activated persulfate: proposed reaction pathways”, Industrial and Engineering Chemistry Research, 49(18), pp.8858-8864.
Liang, C.J., Bruell, C.J., Marley, M.C., and Sperry, K.L. (2004a) “Persulfate oxidation for in situ remediation of TCE. I. Acivated by ferrous ion with and without a persulfate-thiosulfate recox couple”, Chemosphere, 55(9), pp.1213-1223.
Liang, C.J., Bruell, C.J., Marley, M.C., and Sperry, K.L. (2004b) “Persulfate oxidation for in situ remediation of TCE. II. Acivated by chelated ferrous ion”, Chemosphere, 55(9), pp.1225-1233.
Liang, C.J., Su, H.W. (2009) “Identification of sulfate and hydroxyl radicals in thermally activated persulfate”, Industrial and Engineering Chemistry Research, 48(11), pp.5558-5562.
Liang, C.J., Chen, Y.J., Chang, K.J. (2009) “Evaluation of persulfate oxidative wet scrubber for removing BTEX gases”, Journal of Hazardous Materials, 164(2-3), pp.571-579.
Liang, S.H., Kao, C.M., Kuo, Y.C., Chen, K.F. (2011b) “Application of persulfate-releasing barrier to remediate MTBE and benzene contaminated groundwater”, Journal of Hazardous Materials, 185(2-3), pp.1162-1168.
Liang, S.H., Kao, C.M., Kuo, Y.C., Chen, K.F., Yang, B.M. (2011a) “In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system”, Water Research, 45(8), pp.2496-2506.
Lin, C.W., Chen, L.H., I, Y.P., Lai, C.Y. (2010) “Microbial communities and biodegradation in lab-scale BTEX-contaminated groundwater remediation using an oxygen-releasing reactive barrier”, Bioprocess and Biosystems Engineering, 33(3), pp.383-391.
Lin, Q., Chen, Y.X., Plagentz, V., Schafer, D., Dahmke, A. (2004) “ORC-GAC-Fe-0 system for the remediation of trichloroethylene and monochlorobenzene contaminated aquifer: 1. Adsorption and degradation”, Journal of Environmental Sciences-China, 16(1), pp.108-112.
Lin, Q., Plagentz, V., Schafer, D., Dahmke, A. (2007) “Remediation of trichloroethylene and monochlorobenzene-contaminated aquifers using the ORC-GAC-Fe-0-CaCO3 system: Volatilization, precipitation, and porosity losses”, Pedosphere, 17(1), pp.109-116.
Liu, L., Tindall, J.A., Friedel, M.J., Zhang, W.X. (2007) “Biodegradation of organic chemicals in soil/water microcosms system: Model development”, Water, Air, and Soil Pollution, 178(1-4), pp.131-143.
Lohner, S.T., Tiehm, A. (2009) “Application of electrolysis to stimulate microbial reductive PCE dechlorination and oxidative VC biodegradation”, Environmental Science and Technology, 43(18), pp.7098-7104.
Long, C.M., Borden, R.C. (2006) “Enhanced reductive dechlorination in columns treated with edible oil emulsion”, Journal of Contaminant Hydrology, 87(1-2), pp.54-72.
Lopez, E., Schuhmacher, M., Domingo, J.L. (2008) “Human health risks of petroleum-contaminated groundwater”, Environmental Science and Pollution Research, 15(3), pp.278-288.
Lovley, D.R., Holmes, D.E., Nevin, K.P., (2004) “Dissimilatory Fe(III) and Mn(IV) reduction”, Advances in Microbial Physiology, 49, pp.219-286.
Lu, X., Wilson, J. T., Kampbell, D. H. (2006) “Relationship between Dehalococcoides DNA in ground water and rates of reductive dechlorination at field scale”, Water Research, 40(16), pp.3131-3140.
Lu, X.X., Wilson, J.T., Shen, H., Henry, B.M., Kampbell, D.H. (2008) “Remediation of TCE-contaminated groundwater by a permeable reactive barrier filled with plant mulch (Biowall)”, Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering, 43(1), pp.24-35.
Mackay, D.M., Wilson, R.D., Brown, M.J., Ball, W.P., Xia, G., Durfee, D.P. (2000) “A controlled field evaluation of continuous vs. pulsed pump-and-treat remediation of a VOC-contaminated aquifer: site characterization, experimental setup, and overview of results”, Journal of Contaminant Hydrology, 41(1-2), pp.81-131.
Marco-Urrea, E., Nijenhuis, I., Adrian, L. (2011) “Transformation and carbon isotope fractionation of tetra- and trichloroethene to trans-Dichloroethene by Dehalococcoides sp strain CBDB1”, Environmental Science Technology, 45(4), pp.1555-1562.
Mattes, T.E., Alexander, A.K., Coleman, N.V. (2010) “Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution”, FEMS microbiology reviews, 34(4), pp.445-475.
McCarty, P.L. (1994) “An overview of anaerobic transformation of chlorinated solvents”. EPA Symposium on Intrinsic Bioremediation of Ground Water. Denver, CO: 135-142.
McGovern, T., Guerin, T.F., Horner, S., Davey, B. (2002) “Design, construction and operation of a funnel and gate in-situ permeable reactive barrier for remediation of petroleum hydrocarbons in groundwater”, Water, Air and Soil Pollution, 136(1-4), pp.11-31.
Melenova, I., Demnerov, K. (2004) “New possibilities of pollutant removal from the environment and use of a multifunctional permeable barrier system – Multibarrier”, Chemické listy, 98(10), pp.908-915.
Moran, M.J., Zogorski, J.S., Squillace, P.J. (2007) “Chlorinated solvents in groundwater of the United States”, Environmental Science and Technology, 41(1), pp.74-81.
Moroizumi, T., Sasaki, Y. (2008) “Estimating the nonaqueous-phase liquid content in saturated sandy soil using amplitude domain reflectometry”, Soil Science Society of America Journal, 72(6), pp.1520-1526.
Müller, J. A., Rosner, B. M., von Abendroth, G. Meshulam-Simon, G. McCarty, P. L. and Spormann, A. M. (2004) “Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution”, Applied and Environmental Microbiology, 70(8), pp.4880-4888.
Nelson, D.K., Novak, P.J. (2010) “Enhanced dissolution of trichloroethene: Effect of carbohydrate addition and fermentation processes”, Journal of Environmental Engineering-ASCE, 135(9), pp.861-868.
Neta, P., Madhavan, V., Zemel, H., Fessenden, R.W., (1977) “Rate constants and mechanism of reaction of SO4-• with aromatic compounds”, Journal of the American Chemical Society, 99(1), pp.163-164.
N'Guessan, A.L., Vrionis, H.A., Resch, C.T., Long, P.E., Lovley, D.R. (2008) “Sustained removal of uranium from contaminated groundwater following stimulation of dissimilatory metal reduction”, Environmental Science and Technology, 42(8), pp.2999-2004.
NIEA, National Institute of Environmental Analysis <http://www.niea.gov.tw/> (2008) Environmental Analysis Laboratory EPA, Executive Yuan, ROC.
Nyyssonen, M., Kapanen, A., Piskonen, R., Lukkari, T., Itavaara, M. (2009) “Functional genes reveal the intrinsic PAH biodegradation potential in creosote-contaminated groundwater following in situ biostimulation”, Applied Microbiology and Biotechnology, 84(1), pp.169-182.
O'Carroll, D.M., Sleep, B.E. (2007) “Hot water flushing for immiscible displacement of a viscous NAPL”, Journal of Contaminant Hydrology, 91(3-4), pp.247-266.
Ohandja, D.G., Stuckey, D.C. (2007) “Biodegradation of PCE in a hybrid membrane aerated biofilm reactor”, Journal of Environmental Engineering-ASCE, 133(1), pp.20-27.
Padmaja, S., Neta, P., Huie, R.E. “Rate constants for some reactions of inorganic radicals with inorganic ions: Temperature and solvent dependence”, International Journal of Chemical Kinetics, 25(6), pp.447-455.
Page, A. L. (1982) “Methods of soil analysis – part 2 chemical and microbiological properties second edition”, American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, WI.
Pant, P., Pant, S. (2010) “A review: Advances in microbial remediation of trichloroethylene (TCE)”, Journal of Environmental Sciences-China, 22(1), pp.116-126.
Parbs, A., Ebert, M., Dahmke, A. (2007) “Influence of mineral precipitation on the performance and long-term stability of Fe-0-permeable reactive barriers: A review on the basis of 19 Fe-0-reactive barrier sites”, Grundwasser, 12(4), pp.267-281.
Pennell, K.D., Jin, M., Abriola, L.M., and Pope, G.A., “Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene”, Journal of Contaminant Hydrology, 16(1), 35-53, 1994.
Perina, T., Lee, T.C. (2005) “Steady-state soil vapor extraction from a pressure-controlled or flow-controlled well”, Ground Water Monitoring and Remediation, 25(3), pp.63-72.
Pfeiffer, P., Bielefeldt, A. R. Illangasekare, T. and Henry, B. (2005a) “Physical properties of vegetable oil and chlorinated ethene mixtures”, Journal of Environmental Engineering-ASCE, 131(10), pp.1447-1452.
Pfeiffer, P., Bielefeldt, A. R., Illangasekare, T. and Henry B. (2005b) “Partitioning of dissolved chlorinated ethenes into vegetable oil”, Water Research, 39(18), pp.4521-4527.
Phillips, D.H., Van Nooten, T., Bastiaens, L., Russell, M.I., Dickson, K., Plant, S., Ahad, J.M.E., Newton, T., Elliot, T., Kalin, R.M. (2010) “Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater”, Environmental Science and Technology, 44(10), pp.3861-3869.
Pour, A.K., Karamanev, D., Margaritis, A. (2005) “Biodegradation of petroleum hydrocarbons in an immobilized cell airlift bioreactor”, Water Research, 39(15), pp.3704-3714.
Powell, C.L., Nogaro, G., Agrawal, A. (2011) “Aerobic cometabolic degradation of trichloroethene by methane and ammonia oxidizing microorganisms naturally associated with Carex comosa roots”, Biodegradation, 22(3), pp.527-538.
Prommer H., Aziz, L.H., Bolano, N., Taubald, H., Schuth, C. (2008) “Modelling of geochemical and isotopic changes in a column experiment for degradation of TCE by zero-valent iron”, Journal of Contaminant Hydrology, 97(1-2), pp.13-26.
Putzlocher, R., Kueper, B.H., Reynolds, D.A. (2006) “Relative velocities of DNAPL and aqueous phase plume migration”, Journal of Contaminant Hydrology, 88(3-4), pp.321-336.
Qin, C.Y., Zhao, Y.S., Zheng, W., Li, Y.S. (2010) “Study on influencing factors on removal of chlorobenzene from unsaturated zone by soil vapor extraction”, Journal of Hazardous Materials, 176(1-3), pp.294-299.
Qin, X.S., Huang, G.H., Chakma, A., Chen, B., Zeng, G.M. (2007) “Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites”, Science of the Total Environment, 381(1-3), pp.17-37.
Rabus, R., Hansen, T., Widdel, F. (2000) “Dissimilatory sulfate- and sulfur-reducing Prokaryotes”. In: M. Dworkin et al. (Eds.), The prokaryotes: An evolving electronic resource for the microbiological community (3rd ed., release 3.3), Springer-Verlag, New York, online at: http://link.springer-ny.com/link/service/books/10125/.
Ralston, A. W. and Hoerr, C. W. (1942) “The solubilities of the normal saturated fatty acids”, Journal of Organic Chemistry, 7(6), pp.546-555.
Ramaswami, A., Johansen, P.K., Isleyen, M., Bielefeldt, A.R., Illangasekare, T. (2001) “Assessing multicomponent DNAPL biostabilization. I: Coal tar”, Journal of Environmental Engineering-ASCE, 127(12), pp.1065-1072.
Ramaswami, A., Rubin, E., Bonola, S. (2003) “Non-significance of rhizosphere degradation during phytoremediation of MTBE”, International Journal of Phytoremediation, 5(4), pp.315-331.
Rastogi, A., Ai-Abed, S. R., Dionysiou, D. D. (2009b) “Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems”, Applied Catalysis B-Environmental, 85(3-4), pp.171-179.
Rastogi, A., Al-Abed, S.R., Dionysiou, D.D. (2009a) “Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols”, Water Research, 43(3), pp.684-694.
Reinhard, M., Hopkins, G.D., Steinle-Darling, E., LeBron, C.A. (2005) “In situ biotransformation of BTEX compounds under methanogenic conditions”, 25(4), pp.50-59.
R&eacute;v&eacute;sz, S., Sipos, R., Kende, A., Rikker, T., Romsics, C., M&eacute;sz&aacute;ros, E., Mohr, A., Tancsics, A. and M&aacute;rialigeti, K. (2006) “Bacterial community changes in TCE biodegradation detected in microcosm experiments”, International biodeterioration and biodegradation, 58(3-4), pp.239-247.
Rivas, F.J. (2006) “Polycyclic aromatic hydrocarbons sorbed on soils: A short review of chemical oxidation based treatments.” Journal of Hazardous Materials, 138(2), pp.234-251.
Rivett, M.O., Chapman, S.W., Allen-King, R.M., Feenstra, S., Cherry, J.A. (2006) “Pump-and-treat remediation of chlorinated solvent contamination at a controlled field-experiment site”, Environmental Science and Technology, 40(21), pp.6770-6781.
Ross, N., Bickerton, G.. (2002) “Application of biobarriers for groundwater containment at fractured bedrock sites”, Remediation Journal, 21(3), pp.5-21.
Saponaro, S., Negri, M., Sezenna, E., Bonomo, L., Sorlini, C. (2009) “Groundwater remediation by an in situ biobarrier: A bench scale feasibility test for methyl tert-butyl ether and other gasoline compounds”, Journal of Hazardous Materials, 167(1-3), pp.545-552.
Satyawali, Y., Schols, E., Van Roy, S., Dejonghe, W., Diels, L., Vanbroekhoven, K. (2010) “Stability investigations of zinc and cobalt precipitates immobilized by in situ bioprecipitation (ISBP) process”, Journal of Hazardous Materials, 181(1-3), .pp.217-225.
Sawyer, C. N., McCarty, P. L. and Parkin, G. F. (1994) “Chemistry for environmental engineering”, McGraw-Hill Inc.
Schink, B. (1997) “Energetics of syntrophic cooperation in methanogenic degradation”, Microbiology and Molecular Biology Reviews, 61(2), pp.262-280.
Schreiber, M.E., Bahr, J.M. (2002) “Nitrate-enhanced bioremediation of BTEX-contaminated groundwater: parameter estimation from natural-gradient tracer experiments”, Journal of Contaminant Hydrology, 55(1-2), pp.29-56.
Schreiber, M.E., Carey, G.R., Feinstein, D.T., Bahr, J.M. (2004) “Mechanisms of electron acceptor utilization: implications for simulating anaerobic biodegradation”, Journal of Contaminant Hydrology, 73(1-4), pp.99-127.
Schulze, S., Tiehm, A. (2004) “Assessment of microbial natural attenuation in groundwater polluted with gasworks residues”, Water Science and Technology, 50(5), pp.347-353.
Schwarzenbach, R.P., Gschwend, P.M. (1993) “Environmental organic chemistry”, Wiley, New York.
Scow, K.M., Hicks, K.A. (2005) “Natural attenuation and enhanced bioremediation of organic contaminants in groundwater”, Current Opinion in Biotechnology, 16(3), pp.246-253.
Seki, K., Thullner, M., Hanada, J., Miyazaki, T. (2006) “Moderate bioclogging leading to preferential flow paths in biobarriers”, Ground Water Monitoring and Remediation, 26(3), pp.68-76.
Semkiw, E.S., Barcelona, M.J. (2011) “Field study of enhanced TCE reductive dechlorination by a full-scale whey PRB”, Ground Water Monitoring and Remediation, 31(1), pp.68-78.
Simmonds, A.C. (2007) “Dechlorination rates in KB-1, a commercial trichloroethylene-degrading bacterial culture”, M.A.Sc. thesis, University of Toronto, Toronto, Ont.
Singh, C., Lin, J. (2009) “Evaluation of nutrient addition to diesel biodegradation in contaminated soils”, African Journal of Biotechnology, 8(14), pp.3286-3293.
Singh, N., Lee, D.G. (2001) “Permanganate: A green and versatile industrial oxidant”, Organic Process Research and Development, 5(6), pp.599–603
Skramstad, J.D., Hurst, C.J., Novak, P.J. (2003) “Survival of indicator organisms during enrichment on tetrachloroethene”, Water Environment Research, 75(4), pp.368-376.
Smidt, H., De Vos, W.M. (2004) “Anaerobic microbial dehalogenation”, Annual review of Microbiology, 58, pp.42-73
Soares, A.A., Albergaria, J.T., Domingues, V.F., Alvim-Ferraz, M.D.M., Delerue-Matos, C. (2010) “Remediation of soils combining soil vapor extraction and bioremediation: Benzene”, Chemosphere, 80(8), pp.823-828.
Soo, H., Radke, C. J. (1984) “The flow mechanism of dilute stable emulsions in porous media”, Industrial & engineering chemistry fundamentals, 23, pp.342-347.
Soo, H., Radke, C. J. (1986) “A filtration model for the flow of dilute stable emulsions in porous media-I. Theory”, Chemical engineering science, 41, pp.263-272.
Stelzer, N., Buning, C., Pfeifer, F., Dohrmann, A.B., Tebbe, C.C., Nijenhuis, I., Kastner, M., Richnow, H.H. (2006) “In situ microcosms to evaluate natural attenuation potentials in contaminated aquifers”, Organic Geochemistry, 37(10), pp.1394-1410.
Sung, Y., Ritalahti, K.M., Apkarian, R.P., Loffler, F.E. (2006) “Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate”, Applied and Environmental and Microbiology, 72(3), pp.1980-1987.
Tabrez, S., Ahmad, M. (2009) “Toxicity, biomarkers, genotoxicity, and carcinogenicity of trichloroethylene and its metabolites: A review”, Journal of Environmental Science and Health, Part C-Environmental Carcinogenesis and Ecotoxicology Reviews, 27(3), pp.178-196.
Takahata, Y., Kasai, Y., Hoaki T., Watanabe, K. (2006) “Rapid intrinsic biodegradation of benzene, toluene, and xylenes at the boundary of a gasoline-contaminated plume under natural attenuation”, Applied Microbiology and Biotechnology, 73(3), pp.713-722.
Teerakun, M., Reungsang, A., Lin, C.J., Liao, C.H. (2011) “Coupling of zero valent iron and biobarriers for remediation of trichloroethylene in groundwater”, Journal of Environmental Sciences-China, 23(4), pp.560-567.
Thiruverikatachari, R., Vigneswaran, S., Naidu, R. (2008) “Permeable reactive barrier for groundwater remediation”, Journal of Industrial and Engineering Chemistry, 14(2), pp.145-156.
Thomson, N.R., Fraser, M.J., Lamarche, C., Barker, J.F., Forsey, S.P. (2008) “Rebound of a coal tar creosote plume following partial source zone treatment with permanganate”, Journal of Contaminant Hydrology, 102(1-2), pp.154-171.
Tiehm, A., Muller, A., Alt, S., Jacob, H., Schad, H., Weingran, C. (2008) “Development of a groundwater biobarrier for the removal of polycyclic aromatic hydrocarbons, BTEX, and heterocyclic hydrocarbons”, Water Science and Technology, 58(7), pp.1349-1355.
Tiehm, A., Schulze, S. (2003) “Intrinsic aromatic hydrocarbon biodegradation for groundwater remediation”, Oil & Gas Science and Technology-Revue De L Institut Francais Du Petrole, 58(4), pp.449-462.
Tosco, T., Di Molfetta, A., Sethi, R. (2010) “Automatic delineation of capture zones for pump and treat systems: A case study in piedmont, Italy”, Ground Water Monitoring and Remediation, 30(2), pp.46-52.
Travina, O.A., Kozlov, Y.N., Purmal', A.P., Rod'ko, I.Y. (1999) “Synergism of the action of the sulfite oxidation initiators, iron and peroxydisulfate ions”, Russian Journal of Physical Chemistry, 73(8), pp.1215-1219.
Tsai, T. T., Kao, C. M., Hong, A. (2009d) “Treatment of tetrachloroethylene-contaminated groundwater by surfactant-enhanced persulfate/BOF slag oxidation-A laboratory feasibility study”, Journal of Hazardous Materials, 171(1-3), pp.571-576.
Tsai, T.T., Kao, C.M., Hong, A., Liang, S.H., Chien, H.Y. (2008a) “Remediation of TCE-contaminated aquifer by an in situ three-stage treatment train system”, Colloids and Surfaces A-Physicochemical and Engineering Aspects, 322(1-3), pp.130-137.
Tsai, T.T., Kao, C.M., Surampalli, R.Y., Chien, H.Y. (2009a) “Enhanced bioremediation of fuel-oil contaminated soils: laboratory feasibility study”, Journal of Environmental Engineering-ASCE, 135(9), pp.845-853.
Tsai, T.T., Kao, C.M., Surampalli, R.Y., Liang, S.H. (2009c) “Treatment of fuel-oil contaminated soils by biodegradable surfactant washing followed by Fenton-like oxidation”, Journal of Environmental Engineering-ASCE, 135(10), pp.1015-1024.
Tsai, T.T., Kao, C.M., Surampalli, R.Y., Weng, C.H., Liang, S.H. (2010) “Treatment of TCE-contaminated groundwater using Fenton-like oxidation activated with basic oxygen furnace slag”, Journal of Environmental Engineering-ASCE, 136(3), pp.288-294.
Tsai, T.T., Kao, C.M., Wang, J.Y. (2011) “Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation”, Chemosphere, 83(5), pp.687-692.
Tsai, T.T., Kao, C.M., Yeh, T.Y., Lee, M.S. (2008b) “Chemical oxidation of chlorinated solvents in contaminated groundwater: Review”, Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12(2), pp.116-126.
Tsai, T.T., Kao, C.M., Yeh, T.Y., Liang, S.H., Chien, H.Y. (2009d) “Application of surfactant enhanced permanganate oxidation and bidegradation of trichloroethylene in groundwater”, Journal of Hazardous Materials, 161(1), pp.111-119.
Tsai, T.T., Kao, C.M., Yeh, T.Y., Liang, S.H., Chien, H.Y. (2009b) “Remediation of fuel oil-contaminated soils by a three-stage treatment system”, Environmental Engineering Science, 26(3), pp.651-659.
Tubic, A., Dalmacija, B., Agbaba, J., Ivancev-Tumbas, I., Klasnja, M., Dalmacija, M. (2010) “Tracking disinfection by-products and arsenic removal during various drinking water treatment trains”, Water Science and Technology, 61(12), pp.3169-3177.
Turczynowicz, L., Robinson, N.I. (2007) “Exposure assessment modeling for volatiles - Towards an Australian indoor vapor intrusion model”, Journal of Toxicology and Environmental Health-Part A-current Issues, 70(19), pp.1619-1634.
Tyagi, M., da Fonseca, M.M.R., de Carvalho, C.C.C.R. (2011) “Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes”, Biodegradation, 22(2), pp.231-241.
U.S. Environmental Protection Agency (2006) “In-Situ chemical oxidation-engineering issue, EPA-600-R-06-072, US Environmental Protection Agency, Washington, DC.
U.S. Environmental Protection Agency (2010) “Superfund remedy report”, Office of Solid Waste and Emergency Response (5203P), EPA-542-R-10-004.
Van Nooten, T., Diels, L., Bastiaens, L. (2008) “Design of a multifunctional permeable reactive barrier for the treatment of landfill leachate contamination: laboratory column evaluation”, Environmental Science and Technology, 42(23), pp.8890-8895.
Van Nooten, T., Diels, L., Bastiaens, L. (2010) “Microbially mediated clinoptilolite regeneration in a multifunctional permeable reactive barrier used to remove ammonium from landfill leachate contamination: laboratory column evaluation”, Environmental Science and Technology, 44(9), pp.3486-3492.
Volpe, A. Del Moro, G., Rossetti, S., Tandoi, V., Lopez, A. (2007) “Remediation of PCE-contaminated groundwater from an industrial site in southern Italy: A laboratory-scale study”, Process Biochemistry, 42(11), pp.1498-1505.
Waduge, W.A.P., Soga, K., Kawabata, J. (2007) “Physical modeling of LNAPL source zone remediation by air sparging”, Vadose Zone Journal, 6(2), pp.413-422.
Waldemer, R.H., Tratnyek, P.G., Johnson, R.L., Nurmi, J.T. (2007) “Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products”, Environmental Science and Technology, 41(3), pp.1010-1015.
Wang, B., Zhang, H.Y., Fan, Z.M., Ju, Y.Y. (2010) “Compacted sewage sludge as a barrier for tailing impoundment”, Environmental Earth Sciences, 61(5), pp.931-937.
Wang, J., Cutright, T.J. (2005) “Potential waste minimization of trichloroethylene and perchloroethylene via aerobic biodegradation”, Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering, 40(8), pp.1569-1584.
Watts, R.J., Stanton, P.C., Howsawkeng, J., Teel, A.L. (2002) “Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide”, Water Research, 36(17), pp.4283-4292.
Weelink, S.A.B., van Eekert, M.H.A., Stams, A.J.M. (2010) “Degradation of BTEX by anaerobic bacteria: physiology and application”, Reviews in Environmental Science and Bio/Technology, 9(4), pp.359-385.
West, K.A., Johnson, D.R., Hu, P., DeSantis, T.Z., Brodie, E.L., Lee, P.K.H., Feil, H., Andersen, G.L., Zinder, S.H., Alvarez-Cohen, L. (2010) “Comparative genomics of "Dehalococcoides ethenogenes" 195 and an enrichment culture containing unsequenced "Dehalococcoides" strains”, Applied and Environmental Microbiology, 74(11), pp.3533-3540.
Widdowson, M.A. (2004) “Modeling natural attenuation of chlorinated ethenes under spatially varying redox conditions”, Biodegradation, 15(6), pp.435-451.
Widdowson, M.A., Shearer, S., Andersen, R.G., Novak, J.T. (2005) “Remediation of polycyclic aromatic hydrocarbon compounds in groundwater using poplar trees”, Environmental Science and Technology, 39(6), pp.1598-1605.
Williams, P., Benton, L., Warmerdam, J., Sheehan, P. (2002) “Comparative risk analysis of six volatile organic compounds in California drinking water”, Environmental Science and Technology, 36(22), pp.4721-4728.
Wilson, R.D., Yip, W.C., Naas, C.N. (2008) “Assessing performance of a permeable biobarrier”, Proceedings of the Institution of Civil Engineers-Water Management, 161(6), pp.375-379.
Wirthensohn, T., Schoeberl, P., Ghosh, U., Fuchs, W. (2009) “Pilot plant experiences using physical and biological treatment steps for the remediation of groundwater from a former MGP site”, Journal of Hazardous Materials, 163(1), pp.43-52.
Wu, W.M., Nye, J., Jain, M.K., Hickey, R.F. (1998) “Anaerobic dechlorination of trichloroethylene (TCE) to ethylene using complex organic materials”, Water Research, 32(5), pp.1445-1454.
Wu, Y.Q., Ma, C.W. (2011) “Remediation technology of groundwater contaminated by perchloroethylene”, International Journal of Environment and Pollution, 45(1-3), pp.176-185.
Xu, X.R., Li, H.B., Wang, W.H., Gu, J.D. (2004) “Degradation of dyes in aqueous solutions by the Fenton process”, Chemosphere, 57(7), pp.595-600.
Yallop, M.L., Paterson, D.M., Wellsbury, P. (2000) “Interrelationships between rates of microbial production, exopolymer production, microbial biomass, and sediment stability in biofilms of intertidal sediments”, Microbial Ecology, 39(2), pp.116-127.
Yang, C.F., Lee, C.M. (2008) “Pentachlorophenol contaminated groundwater bioremediation using immobilized Sphingomonas cells inoculation in the bioreactor system”, Journal of Hazardous Materials, 152(1), pp.159-165.
Yang, Q., Shang, H.T., Wang, J.L. (2009) “Biosorption and biodegradation of trichloroethylene by acclimated activated sludge”, International Journal of Environment and Pollution, 38(3), pp.289-298.
Yeh, C.H., Lin, C.W., Wu, C.H. (2010) “A permeable reactive barrier for the bioremediation of BTEX-contaminated groundwater: Microbial community distribution and removal efficiencies”, Journal of Hazardous Materials, 178(1-3), pp.74-80.
Yeh, C.K.J., Wu, H.M., Chen, T.C. (2003) “Chemical oxidation of chlorinated non-aqueous phase liquids by hydrogen peroxide in natural sand systems”, Journal of Hazardous Materials, 96(1), pp.29-51.
Yen, C.H., Chen, K.F., Kao, C.M., Liang, S.H., Chen, T.Y. (2011) “Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: Feasibility and comparison with common oxidants”, Journal of Hazardous Materials, 186(2-3), pp.2097-2102.
Yerushalmi, L., Lascourreges, J.F., Guiot, S.R. (2002) “Kinetics of benzene biotransformation under microaerophilic and oxygen-limited conditions, Biotechnology and Bioengineering, 79(3), pp.347-355.
Yerushalmi, L., Lascourreges, J.F., Rhofir, C., Guiot, S.R. (2001) “Detection of intermediate metabolites of benzene biodegradation under microaerophilic conditions”, Biodegradation, 12(6), pp.379-391.
Yerushalmi, L., Manuel, M.F,. Guiot, S.R. (1999) “Biodegradation of gasoline and BTEX in a microaerophilic biobarrier”, Biodegradation, 10(5), pp.341-352.
Yi, Z.J., Lian, B., Yang, Y.Q., Zou, J.L. (2009) “Treatment of simulated wastewater from in situ leaching uranium mining by zerovalent iron and sulfate reducing bacteria”, Transactions of Nonferrous Metals Society of China, 19(3), pp. S840-S844.
Yin, Y., Allen, H.E. (1999) “In situ chemical treatment”, Technology Evaluation Rep., Groundwater Remediation Technologies Analysis Center, Pittsburgh, pp.3-6.
Yu, S., Semprini, L. (2009) “Enhanced reductive dechlorination of PCE DNAPL with TBOS as a slow-release electron donor”, Journal of Hazardous Materials, 167(1-3), pp.97-104.
Zenker, M. J., Borden, R. C., Barlaz, M. A., Lieberman, M. T. and Lee, M. D. (2000) “Insoluble substrates for reductive dehalogenation in permeable reactive barriers”, In: Wickramanayake, G.B., Gavaskar, A. R., Alleman, B. C., Magar, V. S. (2000) Bioremediation and phytoremediation of chlorinated and recalcitrant compounds. Battelle Press, pp. 47-53.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.150.80
論文開放下載的時間是 校外不公開

Your IP address is 18.118.150.80
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code