Responsive image
博碩士論文 etd-0906112-110542 詳細資訊
Title page for etd-0906112-110542
論文名稱
Title
三維高解析度人腦T1弛緩量測
3D High Resolution T1 Mapping of Human Brain
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-09-03
繳交日期
Date of Submission
2012-09-06
關鍵字
Keywords
三重磁化準備快速梯度迴訊、平滑化、曲線配適、角度有效激發率、T1弛緩影像、反轉回復快速自旋迴訊、雙重磁化準備快速梯度迴訊
efficiency, smoothing, curve fitting, T1 mapping, IR-FSE, MP3RAGE, MP2RAGE
統計
Statistics
本論文已被瀏覽 5716 次,被下載 1291
The thesis/dissertation has been browsed 5716 times, has been downloaded 1291 times.
中文摘要
本研究使用IR-FSE、MP2RAGE與自行開發的MP3RAGE三種不同的磁振脈衝序列在1.5T的磁場下,進行全腦組織高解析度T1 mapping量測。MP2RAGE為三維快速梯度迴訊之序列,使用這個技術可以獲得兩個不同反轉時間的訊號,並根據Bloch equation,可建立收取的磁振訊號與T1弛緩參數之間的關係,進一步推算出每個像素的T1弛緩參數。然而,反轉射頻脈衝的激發效率也會影響收取的訊號大小,在文獻中,前人藉由數值模擬針對所使用的隔熱脈衝計算出激發效率以完成T1 mapping,然而,實際狀況中的脈衝效率在造影範圍內可能並非單一常數,因此在本研究中,一種改良版的脈衝序列MP3RAGE被提出,在不增加掃描時間的前提下,多收取一組不同TI的訊號,並藉由對於非線性方程組求解,分別實際算出T1弛緩參數與脈衝效率。此外,在每次實驗當中也使用IR-FSE技術進行T1弛緩參數的量測做為相同解析度下對照的標準。實驗結果發現,在考慮反轉脈衝效率下,使用IR-FSE序列的量測結果與文獻中報告的數值相當接近。此外,利用MP2RAGE所獲得的T1也在合理的範圍之內,但相較於IR-FSE的結果有偏大的現象,這可能與脈衝效率的假設過高有密切的關係。在使用新的MP3RAGE後,成功的獲得全腦高解析度的T1弛緩參數分佈圖以及相對應的脈衝效率分佈,然而,由於非線性運算較容易受到雜訊的影響,與MP2RAGE的結果比較起來,可發現在相同組織內的量測結果顯得較不均勻,但在對脈衝效率分佈圖進行簡單的平滑化並代回重新計算T1弛緩參數之後,就可獲得更接近於IR-FSE的結果。
Abstract
In this study, three different MR pulse sequences, IR-FSE, MP2RAGE, and firstly proposed MP3RAGE, were applied to obtain high-resolution 3D T1 mapping of whole brain at 1.5 Tesla. Among these three sequences, MP2RAGE uses fast gradient echo as readout module. Signals of two different inversion times are acquired at once and can be used to calculate T1 relaxation time according to Bloch equation. However, the magnetization was also influenced by the excitation efficiency of inversion adiabatic pulse, which was usually estimated by numerical simulation and taken as a constant over the field of view in the literature. However, this might not be true in practice. Therefore, a newly modified pulse sequence, MP3RAGE, was proposed to acquire data of three distinct inversion times without increasing scanning time. As a result, the spatial distribution of T1 and inversion efficiency can be assessed by solving nonlinear least square problem. In addition, the IR-FSE sequence with six inversion times was also applied in every experiment to provide T1 value for reference. Results showed that the T1 estimation obtained by MP2RAGE is close to, but slightly lower than that by IR-FSE, which is in agreement with those reported in literatures. In addition, the 3D high-resolution maps of T1 and efficiency were successfully estimated with the use of MP3RAGE. Spatial smoothing on inversion efficiency helps reducing the sensitivity to noise in the nonlinear approach, leading to T1 values closer to those by IR-FSE.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
表目錄 vii
第一章 簡介 1
第一節 背景 1
第二節 研究動機與目的 4
第二章 脈衝序列的分析與比較 6
第一節 反轉回復快速自旋迴訊:IR- FSE 6
第二節 雙重磁化準備快速梯度迴訊:MP2RAGE 11
第三節 雙重磁化準備快速梯度迴訊:MP3RAGE 16
第三章 實驗結果 20
第一節 模擬IR-FSE序列之磁振訊號與eff、T1 mapping量測 21
第二節 模擬MP2RAGE序列之磁振訊號與T1 mapping量測 29
第三節 模擬MP3RAGE序列之磁振訊號與eff、T1 mapping量測 39
第四章 結果比較與討論 46
第五章 結論 53
參考文獻 55
參考文獻 References
[1]H. Vrenken, et al., "Whole-brain T1 mapping in multiple sclerosis: global changes of normal-appearing gray and white matter," Radiology, vol. 240, pp. 811-20, Sep 2006.
[2]Vymazal J, et al., "T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content.," Radiology, May 1999
[3]A. Schwarcz, et al., "Fast in Vivo Water Quantification in Rat Brain Oedema Based on T 1 Measurement at High Magnetic Field," Acta Neurochirurgica, vol. 144, pp. 811-816, 2002.
[4]R. G. Steen, et al., "Brain T1 in young children with sickle cell disease: evidence of early abnormalities in brain development," Magn Reson Imaging, vol. 22, pp. 299-306, Apr 2004.
[5]P. P. Fatouros and A. Marmarou, "Use of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal values," J Neurosurg, vol. 90, pp. 109-15, Jan 1999.
[6]R. B. Buxton, et al., "A general kinetic model for quantitative perfusion imaging with arterial spin labeling," Magn Reson Med, vol. 40, pp. 383-96, Sep 1998.
[7]R. Deichmann, "Fast high-resolutionT1 mapping of the human brain," Magnetic Resonance in Medicine, vol. 54, pp. 20-27, 2005.
[8]P. J. Wright, et al., "Water proton T 1 measurements in brain tissue at 7, 3, and 1.5T using IR-EPI, IR-TSE, and MPRAGE: results and optimization," Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 21, pp. 121-130, 2008.
[9]S. Clare and P. Jezzard, "Rapid T(1) mapping using multislice echo planar imaging," Magn Reson Med, vol. 45, pp. 630-4, Apr 2001.
[10]R. T. Constable, et al., "Signal-to-noise and contrast in fast spin echo (FSE) and inversion recovery FSE imaging," J Comput Assist Tomogr, vol. 16, pp. 41-7, Jan-Feb 1992.
[11]E. Henderson, et al., "A fast 3D look-locker method for volumetric T1 mapping," Magn Reson Imaging, vol. 17, pp. 1163-71, Oct 1999.
[12]J. P. Marques, et al., "MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field," NeuroImage, vol. 49, pp. 1271-1281, 2010.
[13]P.-F. Van de Moortele, et al., "T1 weighted brain images at 7 Tesla unbiased for Proton Density, T2* contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization," NeuroImage, vol. 46, pp. 432-446, 2009.
[14]J. P. Mugler, 3rd and J. R. Brookeman, "Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE)," Magn Reson Med, vol. 15, pp. 152-7, Jul 1990.
[15]P.-F. Van de Moortele, et al., "B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil," Magnetic Resonance in Medicine, vol. 54, pp. 1503-1518, 2005.
[16]C. M. Collins, et al., "Different excitation and reception distributions with a single-loop transmit-receive surface coil near a head-sized spherical phantom at 300 MHz," Magnetic Resonance in Medicine, vol. 47, pp. 1026-1028, 2002.
[17]P. A. Bottomley and E. R. Andrew, "RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging," Phys Med Biol, vol. 23, pp. 630-43, Jul 1978.
[18]D. C. Zhu and R. D. Penn, "Full-brainT1 mapping through inversion recovery fast spin echo imaging with time-efficient slice ordering," Magnetic Resonance in Medicine, vol. 54, pp. 725-731, 2005.
[19]A. Tannus and M. Garwood, "Adiabatic pulses," NMR Biomed, vol. 10, pp. 423-34, Dec 1997.
[20]J. Frahm, et al., "Stimulated echo imaging," Journal of Magnetic Resonance (1969), vol. 64, pp. 81-93, 1985.
[21]S.-J. Wu, "Optimization of contrast and signal homogeneity for high resolution 3D MRI of human brain at 1.5 Tesla," NSYSU, Aug 2011.
[22]W. D. Rooney, et al., "Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo," Magn Reson Med, vol. 57, pp. 308-18, Feb 2007.
[23]R. H. Czosnyka M, Czosnyka Z, Piechnik S, Pickard JD, Chir M., "Vascular components of cerebrospinal fluid compensation," Neurosurgery, Apr 1999
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code