Responsive image
博碩士論文 etd-0907106-145255 詳細資訊
Title page for etd-0907106-145255
論文名稱
Title
以分子動力學研究金奈米線之動態行為
Investigation of Dynamic Behavior of Gold Nanowire By Molecular Dynamics Simulation Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-05-28
繳交日期
Date of Submission
2006-09-07
關鍵字
Keywords
自組裝、聲子、金奈米線、分子動力學
phonon, Gold Nanowire
統計
Statistics
本論文已被瀏覽 5695 次,被下載 2983
The thesis/dissertation has been browsed 5695 times, has been downloaded 2983 times.
中文摘要
本文利用分子動力學模擬方法,研究直徑兩奈米以下之多殼螺旋金奈米線之動態行為。本文研究分成兩部份:一. 奈米線之振動性質研究。探討奈米線在不同軸向應變下的振動行為,以深入了解其原子動態特性。除此之外,在拉伸變形過程中計算出各種不同物理量,包括應力應變關係曲線、降服應力和原子之間的平均鍵長統計;二.互相交錯的奈米線之自組裝行為研究。對奈米線兩端點設定不同邊界條件:固定金奈米線兩端點之邊界和兩端點皆受彈簧力作用之邊界,分別探討兩奈米線之自我組織過程,以及結合處原子運動軌跡及結構變化等特徵的描述。本模擬除了形態結構的展示外,更利用角度關係函數(Angular Correlation Function, ACF)來解釋結構的特徵角度及相變態過程。
Abstract
The molecular dynamics is employed to investigate the dynamical behavior of helical multi-shell gold nanowire with diameter < 2nm . The study can be arranged into two parts, which are part I “The investigation of the dynamical behavior of 7-1 gold nanowire on different axial strain” and part II “the investigation of the self-assembly of crossed multi-shell gold nanowires ”. In part I: We investigate the dynamical behavior of 7-1 gold nanowire on different axial strain. Some physical properties can also be determined during the tensile process, which including the strain-stress relationship, yield stress, and bond length. Moreover, vibrational properties under different tensile strains also are discussed . In part II: The aim of this work is to investigate the effect of fixed and flexible boundary conditions during the self-assembly of crossed multi-shell gold nanowires. The atomic trajectory and deformation morphology have been discussed during the assembly process. In addition, the structure transformation has also been observed on the junction by estimating the Angular Correlation Function (ACF).
目次 Table of Contents
目錄
誌謝
目錄
表目錄
圖目錄
符號說明
中文摘要
英文摘要

第一章 緒論
1.1 研究動機與目的
1.2 奈米線與奈米線陣列簡介
1.3 奈米金屬晶體與金屬奈米線之振動性質研究文獻回顧
1.4 本文架構
第二章 分子動力學理論方法
2.1勢能函數
2.2 運動方程
2.3 溫度修正方法
2.3.1 Rescaling 方法
2.3.2 Nos&eacute;-Hoover 方法
2.4 原子級應力計算方法
2.5 角度相關函數 (Angular Correlation Function, ACF)
2.6 速度-速度自相關函數(Velocity-Velocity Autocorrelation Function ,VACF)
2.7 聲子密度狀態函數 (Phonon Density of State, DOS)
第三章 分子動力學數值方法
3.1 鄰近原子表列法
3.1.1 Verlet List表列法
3.1.2 Cell Link表列法
3.1.3 Verlet List表列法結合Cell Link表列法
3.2 無因次化
3.3 分子動力學於拉伸試驗之流程圖
第四章 結果分析與討論
4.1 物理模型
4.2 鍵長變化
4.3 巨觀金塊材與金奈米粒子的振動行為
4.4 7-1金奈米線的振動性質
第五章 7-1金奈米線的自組裝的接合特性與結果探討
5.1 摘要
5.2 自組裝
5.2.1 物理模型之建構
5.2.2 邊界條件及研究探討
5.2.3 溫度效應及研究探討
5.2.4 結構特徵第六章 結論與建議
6.1 結論
6.2 建議與未來展望 57
參考文獻作者及著作
參考文獻 References
參考文獻
1.Y. Kondo,and Kunio Takayangi, “Synthesis and
characterization of helical multi-shell gold
nanowires”,Science. Vol.289, 606-608 (2000).
2.Kunio Takayangi , Y. Kondo,and H. Ohnishi, “Suspended
gold nanowires:ballistic transport of electrons”, JSAP
International .No.3 ,3-8(2001)
3.Y. Kondo,and Kunio Takayangi, ”Gold nanobridge
stabilized by surface structure”, Physical Review
Letters. Vol. 79, 3455-3458 (1997).
4.V. Rodrigues,and D. Ugate, “Real time imaging of
atomistic process in one-atom-thick metal junctions”,
Physical Review B. Vol.63, 073405-1 (2001).
5.G. S. Cheng et al , J. Mater. Res. Vol.15, 347 (2000).
6.Y. Li ,G. W. Meng, L. D. Zhang, and F. Phillipp,
“Ordered semiconductor ZnO nanowire arrays and their
photoluminescence properties”, Appl. Phys. Lett. Vol.76
(15), 2011 (2000).
7.K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K.
Haraguchi, M. Koguchi, and H. Kakibayashi, “Growth and
optical properties of nanometer-scale GaAs and InAs
whiskers” J. Appl. Phys. Vol.77(2) , 447 (1995).
8.Jing Kong, Nathan R. Franklin, Chongwu Zhou, Michael G.
Chapline, Shu Peng, Kyeongjae Cho, and Hongjie Dai,
“Nanotube Molecular Wires as Chemical Sensors”
Science.Vol.287, 622 (2000).
9.J. Kong, M. G. Chapline,and H. Dai., “Functionalized
Carbon Nanotubes for Molecular Hydrogen Sensors”, Adv.
Mater. Vol.13, 1384 (2001).
10.川合知二 “圖解奈米技術” 工業技術研究院
11.C. C. Chen, C. Y. Chao, and Z. H. Lang, “Simple
Solution-Phase Synthesis of Soluble CdS and CdSe
Nanorods” Chem Mater. Vol.12, 1516 (2000).
12.Liberato Manna, Erik C. Scher, and A. Paul Alivisatos, “Synthesis of Soluble and Processable Rod-, Arrow-,
Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals” J.
Am. Chem. Soc. Vol.122, 12700 (2000).
13.M. S. Gudiksen, and C. M. Lieber, “Diameter-Selective
Synthesis of Semiconductor Nanowires” J. Am. Chem. Soc.
Vol.122, 8801 (2000).
14.S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello,
C. S. Lee, and Y. W. Chung, “Semiconductor Nanowires
from Oxides”, J. Mater. Res, Vol.14, pp.4503-4507(1999).
15.L. C. Chen , S. W. Chang, C. S. Chang, C. Y. Wen, J-J.
Wu, Y. F. Chen, Y. S. Huang and K. H. Chen, “Catalyst-
free and controllable growth of SiCxNy nanorods”, J.
Phys. Chem. Solids. Vol.62, 1567 (2001).
16.Justin D. Holmes, Keith P. Johnston, R. Christopher
Doty, and Brian A. Korgel, “Control of Thickness and
Orientation of Solution-Grown Silicon Nanowires”
Science. Vol.287, 1471 (2000).
17.Yadong Li, Hongwei Liao, Yi Ding, Yue Fan, Yue Zhang,
and Yitai Qian, “Solvothermal Elemental Direct Reaction
to CdE (E = S, Se, Te) Semiconductor Nanorod” Inorg.
Chem. Vol.38, 1382 (1999)
18.二00一年奈米技術與分子電子學的重大發現 隋安莉 洪永 科
學發展 91.05
19.C. M. Lieber, "The Incredible Shrinking Circuit".
Scientific American, September. PP.59 (2001)
20.Gemma Reguera, Kevin D. McCarthy, Teena Mehta, Julie S.
Nicoll, Mark T. Tuominen, and Derek R. Lovley, “
Extracellular electron transfer via microbial
nanowires”, Nature. Vol.435, 1098-1101 (20005).
21.J. D. Holmes, K. P. Johston, R. C. Doty, and B. A.
Korgel, “Control of thickness and orientation of
solution grown silicon nanowires”, Science. Vol.287.
1471-1473 (2000).
22.D. K. Nagesha, M. A. Whitehead, and J. L. Coffer , “ Biorelevant Calcification and Non-Cytotoxic Behavior in Silicon Nanowires ”, Advanced Materials. Vol.17 no.7, p921-924 (2005)
23.Y. Kondo,and Kunio Takayangi, “Synthesis and characterization of helical multi-shell gold nanowires”, Science. Vol.289. 606-608 (2000).
24.Kunio Takayangi , Y. Kondo,and H. Ohnishi, “Suspended gold nanowires:ballistic transport of electrons”, JSAP International. No.3 3-8(2001).
25.Y. Kondo,and Kunio Takayangi, ”Gold nanobridge stabilized by surface structure”, Physical Review Letters. Vol. 79. 3455-3458 (1997).
26.V. Rodrigues,and D. Ugate, “Real time imaging of atomistic process in one-atom-thick metal junctions”, Physical Review B. Vol.63, 073405-1 (2001).
27.S. Michotte, S. M. Tempfli, and L. Piraux, “Current-voltage characteristics of Pb and Sn granular superconducting nanowires”, Applied Physics Letters. Vol.82, 4119-4121 (2003).
28.M. Barbic, J. J. Mock, D.R. Smith, and S. Schultz, “Single crystal silver nanowires prepare by the metal amplification method ”, Journal of Applied Physics. Vol.91, 9341-9345 (2002).
29.Y. Oshima, H. Koizumi, K. Mouri, H. Hirayama, and K. Takayanagi, “Evidence of a single-wall platinum nanotube”, Physical Review B. Vol.65, 121401 (2002).
30.A. Sugawara, T. Coyle, G..G.. Hembree, and M.R.Scheinfein,”Self-organized Fe nanowire arrays prepared by shadow deposition on NaCl(110) templates”,Appl. Phys. Lett. Vol.70, 1043-1045(2001).
31.D. M. Gillingham, I. Linington, C. Muller, and J. A. C. Bland,”quantization of the conduction in Cu nanowires” Journal of Applied Physics. Vol.93, 7388-7389 (2003).
32. V. Rodrigues, T. Fuhrer, D. Ugarte, “Signature of atomic structure in the quantum conductance of gold nanowires”, Physical Review Letters. Vol.85, 4124-4127 (2000).
33.L. G. C. Rego, A. R. Rocha, V. Rodrigues, and D. Ugarte, “Role of structural evolution in the quantum conductance behavior of gold nanowires during streching”, Physical Review B. Vol.67, 045412-1 (2003).
34.V. Rodrigues, J. Bettini, A. R. Rocha, L. G. C. Rego, and D. Ugarte, “Quantum conductance in silver nanowries:Correlation between atomic structure and transport properties”, Physical Review B. Vol.65, 153402 (2002).
35.G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings”, Journal of Applied Physics. Vol.90, 3825-3830 (2001).
36.DeHon February “Array-Based Architecture for Molecular Electronics”Andr&eacute; DeHon <andre@cs.caltech.edu> DeHon February (2002).
37.American Institute of Physics, The industrial physicist 20-23 (2003)
38.M.Terrones, F.Banhart, N.grobert, J.-C. Charlier, H.Terrones, and P.M.Ajayan, vol.89, number7, physical review letters, 12 augest (2002).
39.Papadopoulos. C, Rakitin. A, Li. J, Vedeneev. A.S, and Xu. J.M, “Electronic Transport in Y-Junction Carbon Nanotubes”. Phys. Rev. Lett. Vol.85, 3476-79. (2000).
40.Andriotis. A. N, Menon. M, Srivastava. D, and Chernozatonskii. L, “Rectification Properties of Carbon Nanotube "Y-Junctions"”. Phys. Rev. Lett.. Vol.87, 066802 (1-4) (2001)
41.Peidong. Yang , “Nanotechnology: Wires on water”. Nature. Vol.425, 243-244 (2003)
42.Dongmok Whang, Song. Jin, and Charles. M. Lieber, Nano lett. Vol.3, 951(2003).
43.Peter. A. Smith, Christopher. D. Nordquist, Thomas. N. Jackson, and Theresa. S. Mayer, Applied Physics Letter. Vol. 77, 28 (2000).
44.J. Jorritdms , M. A. M. Gils, J. M. Kerkhoff, and J. G. H. Stienen , Nanotechnology. Vol.7, 263-265. (1996)
45.E.C. Walter , K. Ng, M. P. Zach , R. M. Penner ,and F. Favier, Micoelectronic Enginnering. Vol.61, 62555-561(2002).
46.E. C. Walter , B. J. Murray , F. Favier, G. Kaltenpoth, M. Grunze, and R. M. Penner, ”Noble and Coinage Metal Nanowires by Electrochemical Step Edge Decoration”. J.Phys.Chem.B. Vol.106(44), 11407 -11411 (2002).
47.Hongwei. Li, Dae. Joon. kang, Mark. G. Blamire, and Willhelm. T. S. Huck, Nano letters ,Vol.2 No.4 347-349 (2002).
48.Jana. Zaumseil, Matthew. A. Meitl, Julia. W. P. Hsu, Bharat. R. Acharya, kirk. W. Baldwin, Yueh. Lin. Loo, and John. A. Rogers, Nano Lett. Vol.3, No.9,1223-1227 (2003).
49.Jun. Kameoka, David. czaplewski, haiqing. Liu. and H. G.. Craighead, ”Polymeric nanowire architecture” ,J.Mater. Chem. Vol.14, 1503-1505 (2004).
50.Henk. W. Ch. Postma, Mark. De. Jonge, Zhen. Yao, and Cees. Dekker, Phys. Rev. B. Vol.62, Num.16(2000).
51.Nojeh. A, Lakatos. G.. W, Peng, S, Cho. K, Pease. R. F. W, “A Carbon Nanotube Cross Structure as a Nanoscale Quantum Device”, Nano Lett. Vol.3, 1187.(2003).
52.”Soon nanodevices may have useful application for example,as ultrasensitive detectors of gas molecules and biologigal compounds”, Scientific American. (2001).
53.Xiangfeng. Duan, Yu. Huang, and Charles. M. Lieber, Nano Letters. Vol.2, No.5, 487-490 (2002).
54.D. Wolf, J.Wang, S. R. Phillpot, and H. Gleiter, Phys. Rev. Lett. Vol.74, 4686 (1995); J. Wang, D. Wolf, S. R. Phillpot, and H. Gleiter, Philos. Mag. A. Vol.73, 517 (1996).
55.A. Kara, and T. S. Rahman, Phys. Rev. Lett. Vol.81, 1453 (1998).
56.U. Stuhr, H. Wipf, K. H. Andersen, and H. Hahn, Phys. Rev. Lett. Vol.81, 1449 (1998).
57.K. Suzuki ,and K. Sumiyama, Mater. Trans, JIM .Vol.36, 188 (1995).
58.B. Fultz, L. Anthony, L. J. Nagel, R. M. Nicklow, and S. Spooner, Phys. Rev. B. Vol.52, 3315 (1995).
59.B. Fultz, J. L. Robertson, T. A. Stephens, L. J. Nagel, and S. Spooner, J.Appl.Phys.Vol.79, 8318(1996).
60.B. Fultz, C. C. Ahn, E. E. Alp, W. Struhrhahn, and T. S. Toellner, Phys. Rev. Lett. Vol.79, 937 (1997).
61.H. J. Fecht, Phys. Rev. Lett. Vol.65, 610 (1990).
62.M. Wagner, Acta Metall. Mater. Vol.40, 957 (1992).
63.H. Frase, L. J. Nagel, L. J. Robertson, and B. Fultz, Philos. Mag. B. Vol.75, 335 (1997).
64.H. Frase, B. Fultz, and J. L. Robertson, Phys. Rev. B. Vol.57, 898 (1998).
65.J. Trampenau, K. Bauszuz, W. Petry, and U. Herr, Nanostruct. Mater. Vol.6, 551 (1995).
66.J. J. Burton, “Configuration, energy, and heat capatity of small spherical clusters of atoms” . J.Chem.Phys.Vol.52 ,345 (1970).
67.V. Novotny, and P. P. M. Meincke, Phys.Rev.B. Vol.8, 4186,(1973).
68.M. Dickey, and A. Paskin, Phys. Rev. Lett. Vol.21,1441 (1968).
69.Wang. B. L, Wang. G. H, and Zhao. J. J , Phys. Rev. B. Vol.65, 235406(2002).
70.Sergio. R. Calvo, and Perla. B. Balbuena,“Molecular dynamics studies of phonon spectra
in mono-and bimetallic nanoclusters”, Surface Science. Vol.581, 213–224 (2005).
71.P. H. Dederichs, C. Lehmann, and A. Scholz, “ Resonance Modes of Interstitial Atoms in FCC Metals”, Phys. Rev. Lett. Vol.31, 1130–1132 (1973).
72.J. Q. Broughton, and G. H. Gilmer, “Harmonic analysis of Lennard-Jones FCC grain boundaries”, Modelling. Simul. Mater. Sci. Eng. Vol.6, 393-404 (1998).
73.Kallinteris. G. C, Papanicolaou. N. I, and Evangelakis. G. A, Phys. Rev. B. Vol.55, 2150 (1997).
74.Lynn. L. W, Smith. H. G, and Nicklow. R. M, Phys. Rev. B. Vol.8, 3493(1973).
75.Nicklow. R. M, Gilat. G, Smith. H. G, Raubenheimer. L. J, and Wilkinson. M. K, Phys. Rev. Vol.164 ,922 (1967).
76.G. Gilat, and L. J. Raubenheimer* , “Accurate Numerical Method for Calculating Frequency- Distribution Functions in Solids”, Phys. Rev. Vol.144, 390–395 (1966).
77.Wang. B. L, Yin. S. G, Wang. G.. H, Buldum. A. P. and Zhao. J. J, Phys.Rev.Lett. Vol.86, 2046 (2000).
78.Wang. B. L, Yin. S. G, Wang. G. H. and Zhao. J. J, J. Phys.: Condens. Matter.Vol.13, L403–8 (2001).
79.G. Bilalbegovi&#263;, “Structure and stability of finite gold nanowires”, Phys.Rev.B. Vol.58, 15412–15415 (1998).
80.J. Irving, and J. Kirkwood , “The statistical mechanical theorey of transport properties. IV. The equations of hydrodynamics,” Journal of Chemical Physics, Vol.18, pp. 817-829 (1950).
81.M. Baskes, J. Nelson, and A. Wright, , “Semiempirical modified embedded-atom potentials for silicon and germanium”, Phys. Rev. B., Vol. 40, Issue. 9, pp. 6085-6100 (1989).
82.M. Baskes , “Modified embedded-atom potentials for cubic materials and impurities”, Phys. Rev. B, Vol. 46, Issue. 5, pp. 2727-2742 (1992).
83.J. Slater, G. Koster, “Simplified LCAO method for periodic potential problem”, Physical Review, Vol. 94, No. 6, pp. 1498-1524 (1954).
84.C. Kittle , Introduction to Solid State Physics, John Wiley & Sons, New York. (1996).
85.V. Rosato, M. Guillope, and B. Legrand, “Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model”, Philosophical Magazine A, Vol. 59, No. 2, pp. 321-336 (1989).
86.F. Cleri, and V. Rosato, “Tight-binding potentials for transition metals and alloys”, Phys. Rev. B, Vol. 48 , pp. 22-33 (1993).
87.劉東昇,化學量子力學,徐氏基金會出版,台北,(1992).
88.江元生,結構化學,五南圖書出版,台北,(1998).
89.L. Colombo, “A source code for tight-binding molecular dynamicssimulation”, Computational Materials Science, Vol. 12, pp. 278-287 (1998).
90.F. Cleri, and V. Rosato, “Tight-binding potentials for transition metals and alloys”, Phys. Rev. B, Vol. 48, pp. 22-33 (1993).
91.J. Haile, Molecular Dynamics Simulation: Elementary
Methods, John Wiley & Sons, Inc., New York. (1997).
92.D. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London. (1997).
93.N. Chandra, S. Namilae, and C. Shet, “Local elastic
properties of carbon nanotubes in the presence of Stone-
Wales defects”, Physical Review B, Vol. 69, 94101
(2004).
94.N. Tokita, M. Hirabayashi, C. Azuma, T. Dotera,
“Voronoi space division of a polymer: Topological
effects, free volume, and surface end segregation”,
Journal of Chemical Physcs. Vol.120, 496 (2004).
95.D. Srolovitz, K. Maeda, V. Vitek, and T. Egami,
“Structural defects in amorphous solids statistical
analysis of a computer model”, Philosophical Magazine
A. Vol. 44, 847-866 (1981).
96.N. Miyazaki, and Y. Shiozaki, JSME International
journal Series A. Vol.39, 606(1996).
97.H. Ikeda, Y. qi, T. Cagin, K. Samwer, W. L. Johnsion,
and W. A. Goddard, “Strain rate induced amorphization
in metallic nanowires” Physical Review Letters Vol. 82, 2900-2903(1999).
98.M. P, Allen and D. J. Tildesley , Computer Simulation
of Liquids, Clarendon press. Oxford. (1991).
99.J. W. Cooley, and J. W. Tukty, “An algonrithm for the
mechine calculation of complex Fourier series ” ,
Mathematics Computation, vol. 19, 297-301(1965).
100.S. Nose, “A unified formulation of the constant
temperature molecular dynamics methods”, Journal of
Chemical Physical, Vol.81, 511,(1984).
101.W. Hoover, “Canonical dynamics: Equilibrium phase-
spacedistributions” , Physical Review A, Vol.31,1695,
(1985).
102.Cooper. G. R, and McGillem. C. D, Probabilistic
Methods of Signal and System Analysis 2nd edn (New
York: Holt,Rinehart & Winston) p 253. (1971)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code