Responsive image
博碩士論文 etd-0907107-113602 詳細資訊
Title page for etd-0907107-113602
論文名稱
Title
1、Ce摻雜LiGaO2晶體發光性質研究,2、化學氣相沉積法在γ相鋁酸鋰基板上成長(10-10)面非極性氮化鎵薄膜
1、Investigation on luminescence property of Cerium doped LiGaO22、Growth of nonpolar GaN(10-10)film on γ-LiAlO2 substrate by chemical vapor deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
41
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-13
繳交日期
Date of Submission
2007-09-07
關鍵字
Keywords
化學氣相沉積、柴氏提拉法
CVD, Czochralski
統計
Statistics
本論文已被瀏覽 5660 次,被下載 0
The thesis/dissertation has been browsed 5660 times, has been downloaded 0 times.
中文摘要
近紫外光搭配螢光體的方法是目前白光發光二極體發展的主要方向之一,含Ce3+的螢光材料已發展很長一段時間,Ce3+的外層電子為4f1,此電子可以被激發至5d軌域,並且隨著摻雜在不同的母體晶格,而呈現出不同波長的發光體。本論文的第一個部份是利用柴氏提拉法(Czochralski growth),提拉LiGaO2摻雜Ce的晶體,Ce的摻雜量在0.2ppm,採用的生長條件為一大氣壓,提拉速率為2.0mm/hr,轉速為10∼20RPM,提拉完成的晶體從錐頂至根底總長度為20公分。經由光激發光譜(Photoluminescence, PL)量測發現於波長505nm處有一個介於黃綠光之間放射峰,由此得知,LiGaO2可以藉由摻雜Ce而發出磷光。
第二部分是生長GaN薄膜,GaN基材料由於寬能帶、熱穩定性和化學穩定性好、波長涵蓋可見光到紫外光,在光電子學和微電子學領域中有重要的應用前景。但由於GaN單晶體製備非常困難和缺少與之相匹配度的異質基板材料,所以GaN磊晶生長ㄧ般都是在晶格不匹配度較差的基板上進行,導致GaN薄膜中的差排等缺陷密度非常高。降低GaN薄膜中的差排密度,提高其晶體品質,是目前GaN研究領域中的一個重點。本研究是使用γ-LiAlO2(100)晶體為基板,經由化學氣相沈積 (Chemical Vapor Deposition﹐CVD)製備GaN薄膜,經由改變不同的參數,GaN生長的方向與結構也會有所差異,在此論文中,我們改變生長溫度以及反應壓力的參數來獲得GaN(10-10)面的薄膜。
Abstract
The method of coating near-ultraviolet light with phosphor powders is one of the main trends in the current development of white light-emitting diodes (LEDs). It a long time for the development of Ce3+ doped phosphor materials. The Ce3+ has one outer 4f1 electron. And this electron can be excited to 5d. The luminescence wavelength of Ce3+ doped phosphor materials different from the different host lattice.
First part of this paper is about the growth of cerium doped LiGaO2 crystal by conventional Czochralski melt pulling method. The dose of cerium is 0.2ppm. The growth were operated in the ambient pressure, with the pull rate of 2.0 mm/hour and the rotation rate of 10~20 RPM. LiGaO2 crystal of 200 mm in length was grown under these conditions. We found a yellow to green peak on 505 nm from the measurement of photoluminescence spectra. It showed that LiGaO2 can emit phosphorescence by the doped of cerium.
Second part of this paper is growth of Gallium nitride (GaN) thin films. GaN possess vast application potential in the fields of optoelectronics and microelectronics for its wide band gap, high thermal stability and high chemistry stability. GaN mostly grow on large lattice mismatch substrates, for the difficulty growth of GaN bulk single crystal and scarce of lattice match heteroepitaxial substrates. This result in great dislocation defects density in the GaN films. To lower the dislocation density of GaN films and improve the crystal quality is an important point of GaN research fields.
In this study, the GaN thin films were grown on γ-LiAlO2(100) substrates by Chemical Vapor Deposition(CVD). We found that the growth direction and structure of GaN were influenced by growth parameter. The GaN(10-10) thin films were grown by the adjust of growth temperature and pressure.
目次 Table of Contents
摘要 I
Abstract II
第一章 導論 1
第二章 Ce:LiGaO2單晶生長 3
2.1 LiGaO2晶體結構與特性: 3
2.2柴氏提拉法介紹: 4
2.3 研究動機: 5
2.4實驗步驟: 6
2.5實驗結果: 8
2.6 儀器量測結果: 11
2.7結論: 14
第三章 GaN磊晶在LiAlO2(100)基板 15
3.1 GaN簡介: 15
3.2 LiAlO2的晶體結構: 16
3.3 化學氣相沉積法: 17
3.4 薄膜生長概論: 18
3.5研究動機: 21
3.6實驗設備: 22
3.7實驗步驟: 23
3.7.1基板前處理 23
3.7.2 GaN之成長步驟 23
3.8製程參數與實驗結果: 24
3.8.1 無氮氣流量下生長GaN 24
3.8.2有氮氣流量下生長GaN 28
3.9結論: 31
參考文獻 32
參考文獻 References
[1]台日白光LED相關材料及其製程研討會(2006).
[2]A.Mele﹐A.Giardini﹐T.M.Di Palma﹐C.Flamini﹐H.Okabe﹐R.Teghil﹐
International Journal of Photoenergy 3(2001)111.
[3]科學發展2002年1月﹐349期.
[4]S.Porowski﹐J.Jun﹐M.Bockowski﹐M.Leszczynski﹐M.Wroblewski﹐B.Lucznik﹐I.Grzegory﹐Proc.8th Conference on Semi-Insulating III-V Material﹐Warsaw﹐editor M.Godlewski﹐World Scientific﹐P.61﹐1994.
[5]A.Dadger﹐P.Veit﹐F.Schulze﹐J.Blasing﹐A.Krtschil﹐H.Witte﹐A.Diez﹐
T.Hempel﹐J.Christen﹐R.Clos﹐Thin Solid Films 515(2007)4356.
[6]R.P.Hageman﹐S.Haffouz﹐V.Kirilyuk﹐A.Grzegorczyk﹐P.K.Larsen﹐
Phys.Stat.Sol. 188(2001)523.
[7]T.Yamashita﹐S.Hasegawa﹐S.Nishida﹐M.Ishimaru﹐Y.Hirotsu﹐H.Asahi﹐
Appl.Phys.Lett. 86(2005)082109.
[8]A.P.Lima﹐T.Frey﹐U.Kohler﹐C.Wang﹐D.J.As﹐B.Schottker﹐K.Lischka﹐
D.Schikora﹐J.Cryst.Growth 197(1999)31.
[9]J.T.Torvik﹐M.W.Leksono﹐J.I.Pankove﹐C.Heinlein﹐J.K.Grepstad﹐
C.Magee﹐Journal of Electronic Materials,28(1999)234.
[10]J.V.Pezold﹐P.D.Bristowe﹐Journal of Material Science 40(2005)3051
[11]S.W.Kang﹐H.J.Park﹐T.Kim﹐T.Dann﹐O.Kryliouk﹐T.Anderson﹐Phys.Stat.Sol.2(2005)2420.
[12]B.Shen﹐Y.G.Zhou﹐Z.Z.Chen﹐P.Chen﹐R.Zhang﹐Y.Shi﹐Y.D.Zheng﹐W.Tong﹐W.Park﹐Appl.Phys.A 68(1999)593.
[13]J.H.Kim﹐S.C.Choi﹐J.Y.Choi﹐K.S.Kim﹐G.M.Yang﹐C.H.Hong﹐K.Y.Lim﹐
H.J.Lee﹐Jpn.J.Appl.Phys. 38(1999)2721.
[14]K.Xu﹐J.Xu﹐P.Deng﹐R.Qiu﹐Z.Fang﹐Phys.Stat.Sol. 176(1999)589.
[15]Y.J.Sun﹐O.Brandt﹐U.Jahn﹐T.Y.Liu﹐A.Trampert﹐S.Cronenberg﹐S.Dhar﹐
K.H.Ploog﹐J.Appl.Phys. 92(2002)5714.
[16]T.Kuykendall﹐P.J.Pauzauskie﹐Y.Zhang﹐J.Goldberger﹐D.Sirbuly﹐J.Denlinger﹐P.Yang﹐nature materials 3(2004)524.
[17]S.Duan﹐X.Teng﹐P.Han﹐D.C.Lu﹐J.Cryst.Growth 195(1998)304.
[18]L.Liu﹐J.H.Edgar﹐Materials Science and Engineering R 37 (2002) 61.
[19]Y.Tazoh﹐T.Ishii﹐S.Miyazawa﹐Jpn.J.Appl.Phys.36(1997)L746
[20]J.P.Remeika﹐A.A.Ballman﹐Appl.Phys.Lett. 5(1964)180.
[21]M.Marezio﹐J.P.Remeika﹐J.Phys.Chem.Solids 26(1965)26.
[22]T.Ishii﹐Y.Tazoh﹐S.Miyazawa﹐J.Cryst.Growth 186(1998)409.
[23] J. Czochralski, Z. Phys. Chem. 92 ( 1918 ) 219.
[24]G.Blasse﹐A.Bril﹐Appl.Phys.Lett. 11(1967)53.
[25]H.Morkoc﹐Nitride Semiconductors and Divices﹐2th ed.﹐Ch2(1999)
[26]W.C.Johnson﹐J.B.Parsons﹐M.C.Crew﹐J.Phys.Chem. 36(1932)2561.
[27]E.Tiede﹐M.Thimann﹐K.Sensee﹐Chem.Berichte 61(1928)1568.
[28]R.Juza﹐H.Hahn﹐Z.Anorg﹐Allgem.Chem. 239(1938)282.
[29]H.J.Hovel﹐J.J.Cuomo﹐Appl.Phys.Lett. 20(1972)71.
[30]N.Puychevrier﹐M.Menoret﹐Thin Solid Films 36(1976)141.
[31]H.P.Maruska﹐J.J.Tietjen﹐Appl.Phys.Lett. 15(1969)327.
[32]B.Monemar﹐O.Lagerstedt﹐J.Appl.Phys. 50(1979)6480.
[33]A.Armstrong﹐A.R.Arehart﹐Appl.Phys.Lett. 84(2004)374.
[34]S.Nakamura﹐M.Senoh﹐T.Mukai﹐Appl.Phys.Lett. 62(1993)2390.
[35]P.R.Hageman﹐J.J.Schermer﹐P.K.Larsen﹐Thin Solid Films 443(2003)9.
[36]A.Y.Cho﹐Appl.Phys.Lett. 19(1971)467.
[37]S.Y.Kuo﹐C.C.Kei﹐C.N.Hsiao﹐C.K.Chao﹐F.I Lai﹐H.C.Kuo﹐W.F.Hsieh﹐
S.C.Wang﹐IEEE Transactions on Nanotechnology 5(2006)273.
[38]Z.Yang﹐L.K.Li﹐W.I.Wang﹐Appl.Phys.Lett. 67(1995)1686.
[39]S.Yoshida﹐S.Misawa﹐S.Gonda﹐Appl.Phys.Lerr. 42(1982)427.
[40]S.Nakamura﹐Jpn.J.Appl.Phys.30(1991)L1705.
[41]A.P.de Kroon﹐G.W.Schafer﹐F.Aldinger﹐J.Alloys and Compounds 314(2001)147.
[42]M.Marezio﹐Acta Cryst.19(1965)396.
[43]K.Xu﹐J.Xu﹐P.Deng﹐R.Qiu﹐Z.Fang﹐Phys.stat.Sol.176(1999)589.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.220.81.106
論文開放下載的時間是 校外不公開

Your IP address is 18.220.81.106
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code