Responsive image
博碩士論文 etd-0907109-113124 詳細資訊
Title page for etd-0907109-113124
論文名稱
Title
以壓力循環氧化系統處理受石油碳氫化合物污染之底泥
Application of Pressure-assisted Oxidation System to Remediate Petroleum-hydrocarbon Contaminated Sediments
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-31
繳交日期
Date of Submission
2009-09-07
關鍵字
Keywords
總石油碳氫化合物、底泥、壓力循環系統、類芬頓氧化、化學氧化
chemical oxidation, sediment, total petroleum hydrocarbon, pressure-assisted system, Fenton-like oxidation
統計
Statistics
本論文已被瀏覽 5649 次,被下載 0
The thesis/dissertation has been browsed 5649 times, has been downloaded 0 times.
中文摘要
底泥通常是黏土、泥沙、有機質及各種礦物的混合物,經過長時間物理、化學及生物等作用及水體傳輸而沉積於水體底部所形成,同時也是許多表面水體中持久性污染物質的主要蓄積處。由環保署之底泥調查結果可知,河川沿岸工廠排放之廢油造成底泥中總石油碳氫化合物(total petroleum hydrocarbon, TPH)濃度偏高。因底泥團粒粒徑較小且含有較高之有機質,污染物和底泥之吸附性及親和性均較高,故處理上較為困難。本研究旨在探討以此壓力循環裝置結合其他處理方法處理受石油碳氫化合物污染底泥,評估其對去除TPH之成效。
本研究以實場污染底泥進行,並探討在不同壓力下以去離子水淋洗及類芬頓氧化法(Fenton-like oxidation)氧化TPH之去除成效。實驗結果顯示,於壓力1.01 bar下以去離子水進行淋洗,雖然增加淋洗次數,但仍無法有效將底泥中之TPH移除,使其濃度降低。另一方面,使用壓力循環系統進行沖洗,則有明顯之沖洗效果,且隨壓力自6 bar增加至10 bar,沖洗兩次之效率也自10%增加至18%。觀察原土經6 bar及10 bar加壓處理後之粒徑變化顯示,底泥之中值粒徑由原本的105 μm改變為19 μm (6 bar)及10 μm (10 bar)。證實底泥於反覆加壓及減壓過程中,因孔隙間氣體體積之變化,使底泥產生破碎,致使有機污染物暴露量增加。
以壓力循環系統結合Fenton-like法亦得到相同之趨勢。於1.01 bar下進行Fenton-like法氧化有機污染物,其TPH去除率於120 min反應時間下約為38%,而以10 bar下進行Fenton-like法氧化有機污染物,則可將TPH去除率提升至47%,且過氧化氫濃度剩約0.02%,故可知壓力循環系統能加速氧化反應,且氧化劑亦能有效地被使用。
為有效提高底泥中TPH之去除率及減少氧化劑之使用量,本研究將去離子水配合壓力循環系統作為前處理步驟,再以Fenton-like進行氧化處理。由實驗結果可知,底泥經壓力循環系統前處理(10 bar)後,可有效提升後續Fenton-like氧化TPH之去除率(TPH去除率約增加15%),亦能藉前處理程序進而達到節省氧化劑之目的。此外,以低濃度過氧化氫7.5%於10 bar下進行氧化時,所得之TPH去除率分別為63.9% (氧化兩次)、74.1%(氧化三次),即表示氧化劑於多次添加(即氧化數次)時,可有效提升TPH去除率。
Abstract
Sediments are transported by the flowing water then build up on the bottom of water bodies as the materials settle. Contaminated sediments are composed of soils, sand, organic matters, and other minerals that accumulate on the bottom of water bodies and contain toxic or hazardous materials at levels that may adversely affect human health or the environment. The contaminated deposits can be decomposed and released into liquid phase by dramatic changes on environmental conditions. However, the contaminated deposits have a potential of causing changes of nature water system, especially for aquatic livings. Sediments contaminated by light non-aqueous-phase liquids (e.g., fuel oil) and heavy metal are prevalent and of a great concern. The major advantage of Fenton-like oxidation process is that the reagent components are safe to handle and environmentally benign. However, protective enclosure of contaminants with aged sediment matrices and the hydrophobic nature of contaminants limit their accessibility to treatment agents; these obstacles prevent treatment efforts from widespread successes. The interactions of hydrophobic contaminants with the soil matrix in various ways often limit contaminant availability for remediation. In order to overcome this limitation and increase contact, a novel extraction technique that utilized oxidation agent and elevated pressure in consecutive cycles of compression and decompression was developed and applied to soil slurry in the presence of chelating or oxidation agent.
The objective of this study was to design a pressure-cycling system that integrates the oxidation agent. This system has the following advantages over traditional chemical treatment: (1) increased process speed, (2) lower operating costs, and (3) the transition metal elements can catalyze the oxidized pollutants. In this study, fuel oil was selected as the target compounds to evaluate the effectiveness of pressure-cycling system on the treatment of fuel oil contaminated sediment. The oxidizing agent used in this study was H2O2. The operating parameters included system pressure, pressure cycles, oxidizing agent concentration, and reaction time. Results show that approximately 38% of TPH was removed after 120 min of reaction with Fenton-like oxidation without pressurization. However, the removal efficiency increased to 47% under the pressure of 10 bar. Thus, pressure-assisted oxidation system is able to accelerate the oxidation reaction, and cause the remove the removal of TPH more effectively. To enhance TPH removal efficiency effectively and reduce the oxidant amount used, water flushing combined with pressure-assisted system as a pretreatment process was applied. Results show that TPH removal efficiency can be significantly enhanced and the amount of oxidant usage can be reduced when the pressurized water flushing was applied before the oxidation process.
目次 Table of Contents
目錄
誌謝 I
摘要 II
Abstract IV
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1底泥介紹 3
2.1.1底泥之形成 3
2.2石油碳氫化合物之污染來源及污染特性 6
2.3底泥污染處理技術 10
2.4化學氧化法之介紹 14
2.4.1Fenton化學氧化法 17
2.4.2Fenton-like化學氧化法 18
2.5壓力循環系統之介紹 22
第三章 研究方法 25
3.1研究流程 25
3.2實驗材料與設備 26
3.2.1底泥之來源 26
3.2.2實驗試劑 26
3.2.3實驗模組 26
3.3實驗方法 28
3.3.1底泥基本特性分析 29
3.3.2TPH處理試驗 33
第四章 結果與討論 36
4.1底泥基本性質分析 36
4.2純水淋洗 38
4.3Fenton-like氧化法 41
4.4純水淋洗法接續Fenton-like法 48
4.4.1比較底泥有無前處理之影響 48
4.4.2不同反應時間之影響 51
4.4.3以Fenton-like法氧化數次之影響 53
第五章 結論與建議 58
5.1結論 58
5.2建議 60
參考文獻 61
表目錄
表1-1為各種石油產物蒸餾溫度及其碳數分佈 2
表2-1土壤污染管制標準 10
表2-3四種氧化劑適用污染物種類 15
表2-4四種氧化劑之優缺點 16
表2-5一般氧化劑之相對氧化力 17
表2-6自然界最常見氧化鐵礦物之物理與化學特性 21
表4-1現地底泥之基本特性分析 37
圖目錄
圖2-1水體底泥的形成流程 4
圖2-2經壓力循環處理系統後之土壤顆粒破損原理 23
圖2-3臭氧於壓力循環系統中之處理流程圖 24
圖3-1研究流程 25
圖3-2實驗模組示意圖 27
圖3-3實驗模組 28
圖3-4實驗流程 29
圖4-1以純水淋洗污染底泥之TPH去除率,壓力為1.01 bar、6 bar、10 bar,每次淋洗時間為30 min 40
圖4-2在不同處理條件下之底泥粒徑分佈 40
圖4-3以Fenton-like法處理污染底泥之TPH去除率,過氧化氫為15%,壓力為1.01 bar、6 bar、10 bar,反應時間為30 min、60 min、120 min 43
圖4-4以Fenton-like法處理污染底泥之過氧化氫殘餘濃度之變化,過氧化氫為15%,壓力為1.01 bar、6 bar、10 bar,反應時間為30 min、60 min、120 min 43
圖4-5以Fenton-like法處理污染底泥之TPH去除率,過氧化氫為15%,壓力為1.01 bar、6 bar、10 bar,反應時間為30 min、60 min、120 min(壓力停留時間為60秒) 44
圖4-6以Fenton-like法處理污染底泥之過氧化氫殘餘濃度之變化,過氧化氫為15%,壓力為1.01 bar、6 bar、10 bar,反應時間為30 min、60 min、120 min(壓力停留時間為60秒) 44
圖4-7以Fenton-like法處理污染底泥之TPH去除率,過氧化氫分別為7.5%、15%,壓力為1.01 bar與10 bar,反應時間為30 min (壓力停留時間為60秒) 47
圖4-8以Fenton-like法處理污染底泥之過氧化氫殘餘濃度之變化,過氧化氫分別為7.5%、15%,壓力為1.01 bar與10 bar,反應時間為30 min (壓力停留時間為60秒) 47
圖4-9比較有無前處理,接續以Fenton-like法氧化污染底泥之TPH去除率,過氧化氫為7.5%,壓力為1.01 bar與10 bar,反應時間為30 min 50
圖4-10比較有無前處理,接續以Fenton-like法氧化污染底泥之過氧化氫殘餘濃度之變化,過氧化氫為7.5%,壓力為1.01 bar與10 bar,反應時間為30 min 50
圖4-11以純水淋洗兩次(壓力為1.01 bar、10 bar),接續以Fenton-like法氧化污染底泥之TPH去除率,過氧化氫為7.5%,壓力為1.01 bar與10 bar,反應時間為30 min、60 min、90 min 52
圖4-12以純水淋洗兩次(壓力為1.01 bar、10 bar),接續以Fenton-like法氧化污染底泥之過氧化氫殘餘濃度之變化,過氧化氫為7.5%,壓力為1.01 bar與10 bar,反應時間為30 min、60 min、90 min 52
圖4-13以純水淋洗兩次(壓力分別為1.01 bar、10 bar),接續以Fenton-like法氧化污染底泥數次之TPH去除率,過氧化氫為7.5%,壓力為1.01 bar與10 bar,反應時間為30 min 55
圖4-14以純水淋洗兩次(壓力為1.01 bar),接續以Fenton-like法氧化污染底泥之TPH降解變化(分別為氧化二次及三次),過氧化氫為7.5%,壓力為1.01 bar,反應時間為30 min 56
圖4-15以純水淋洗兩次(壓力為10 bar),接續以Fenton-like法氧化污染底泥之TPH降解變化(分別為氧化二次及三次),過氧化氫為7.5%,壓力為10 bar,反應時間為30 min 57
參考文獻 References
參考文獻
Alonso-Rodriguez, E., Moreda-Pineiro, J., Lopez-Mahia, P., Prada-Rodriguez, D., Fernandez- Fernandez, E., Muniategui-Lorenzo, S., Moreda- Pineiro, A., Bermejo-Barrera, A., and Bermejo-Barrera, P., 2006, “Pressurized liquid extraction of organometals and its feasibility for total metal extraction”, TrAC Trends in Analytical Chemistry, Vol. 25, p.p. 511-519.
Andreottola, G. and Ferrarese, E., 2008, “Application of advanced oxidation processes and electrooxidation for the remediation of river sediments contaminated by PAHs”, Journal of Environmental Science and Health, Part A, Vol. 43, p.p. 1361-1372.
Burbano, A.A., Dionysiou, D.D., Suidan M.T. and Richardson, T.L., 2005, “Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent”, Water Research, Vol. 39, p.p. 107-118.
Chen, P.H. and Watts, R.J., 2000, “Determination of rates of hydroxyl radical generation in mineral-catelyzed Fenton-like oxidation”, Journal of the Chinese Institute of Environmental Engineering, Vol. 10, p.p. 201-208.
Goss, K.U., 2004, “The air/surface adsorption equilibrium of organic compounds under ambient conditions”, Critical Reviews in Environmental Science and Technology, Vol. 34, p.p. 339-389.
Goss, K.U., Buschmann, J. and Schwarzenbach, R.P., 2004, “Adsorption of organic vapors to air-dry soils: Model predictions and experimental validation”, Environmental Science and Technology, Vol. 38, p.p. 3667-3673.
Goi, A., Kulik, N. and Trapido, M., 2006, “Combined chemical and biological treatment of oil contaminated soil”, Chemosphere, Vol. 63, p.p. 1754-1763.
Grant, A. and Briggs, A.D., 2002, “Toxicity of sediments from around a North Sea oil platform: are metals or hydrocarbons responsible for ecological impacts”, Marine Environmental Research, Vol. 53, p.p. 95-116.
Holst, T., Jørgensen, Niels O.G., Jørgensen, C. and Johansen, A., 2003, “Degradation of microcystin in sediments at oxic and anoxic, denitrifying conditions”, Water Research, Vol. 37, Issue: 19, p.p. 4748-4760.
Hong, P.K.A. and Nakra, S., 2009, “Rapid extraction of sediment contaminants by pressure cycles”, Chemosphere, Vol. 74, pp. 1360-1366.
Hong, P.K.A., Nakra, S., Kao, C.M. and Hayes, D.F., 2008a, “Pressure-assisted ozonation of PCB and PAH contaminated sediment”, Chemosphere, Vol. 72, p.p. 1757-1764.
Hong, P.K.A., Cai, X., and Cha, Z., 2008b, “Pressure-assisted chelation extraction of lead from contaminated soil”, Environmental Pollution, Vol. 153, p.p. 14-21.
Hsueh, C.L., Huang, Y.H., Wang, C.C. and Chen, C.Y., 2005, “Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system”, Chemosphere, Vol. 58, p.p. 1409-1414.
Huang, X.D., Alawi, Y.E., Gurska, J., Glick, B.R. and Greenberg, B.M., 2005, “A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPH) from soils”, Microchemical Journal, Vol. 81, p.p. 139-147.
Huggett, D.B., Steevens, J.A., Allgood, J.C., Lutken, C.B., Grace, C.A. and Benson, W.H., 2001, “Mercury in sediment and fish from North Mississippi Lakes”, Chemosphere, Vol. 42, p.p. 923-929.
International Technology and Regulatory Cooperation (ITRC), 2005, Technical and regulatory guidance for in-situ chemical oxidation of contaminated soil and groundwater. 2nd. Ed., Http://www.itrcweb.org/
Kang, S.F., Liao, C.H. and Chen, M.C., 2002, “Pre-oxidation and coagulation of textile wastewater by the Fenton Process”, Chemosphere, Vol. 46, p.p. 923-928.
Kubal, M., Janda, V. and Benes, P., 2008, “In situ chemical oxidation and it’s application to remediation of contaminated soil and groundwater”, Chemicke Listy, Vol. 102, p.p.493-499.
Kwan, W. and Voelker, B., 2003, “Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like system”, Environmental Science Technology, Vol. 37, p.p. 1150-1158.
Literathy, P., Nasser A., L., Zarba, M. A. and Ali, M. A., 1987, “The role and problems of monitoring bottom sediment for pollution assessment in the coastal marine environment”, Water Science and Technology, Vol. 19, p.p. 781-792.
Lu, M.C., 2000, “Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite”, Chemosphere, Vol. 40, p.p. 125-130.
Martı′nez-Llado′, X., Gibert, O., Martı′, V., Dı′ez, S., Romo, J., Bayona, J.M. and Pablo, J.de., 2007, “Distribution of polycyclic aromatic hydrocarbons (PAHs) and tributyltin (TBT) in Barcelona harbour sediments and their impact on benthic communities”, Environmental Pollution, Vol. 149, p.p. 104-113.
Masschelein, W., Denis, M. and Ledent, R., 1997, “Spectrophotometric determination of residual hydrogen peroxide”, Water&Sewage Works, August Issue, p.p.69-72.
Matta, R., Hanna, K. and Chiron, S., 2007, “Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals”, Science of the Total Environment, Vol. 385, p.p. 242-251.
Millioli, V.S., Freire, D.D.C. and Cammarota, M.C., 2003, “Petroleum oxidation using Fenton’s reagent over beach sand following a spill”, Journal of Hazardous Materials, Vol. 103, p.p. 79-91.
Mulligan, C.N., Yong, R.N. and Gibbs, B.F., 2001, “Surfactant-enhanced remediation of contaminated soil: a review”, Engineering Geology, Vol. 60, p.p. 371-380.
Quan, H.N., Teel, A.L. and Watts, R.J., 2003, “Effects of contaminant hydrophobicity on hydrogen peroxide dosage requirement in the Fenton-like treatment of soils”, Journal of Hazardous Materials, Vol. 102, p.p. 277-289.
Schultz, P., and Urban, N.R., 2008, “Effects of bacterial dynamics on organic matter decomposition and nutrient release from sediments: A modeling study”, Ecological Modelling, Vol. 210, Issue: 1-2, p.p. 1-14.
Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L. and Lowe, K.S., 2001, “Principle and practices of in situ chemical oxidation using permanganate”, Battelle press.
Sakamaki, T. and Nishimura, O., 2007, “Physical control of sediment carbon content in an estuarine tidal flat system (Nanakita River, Japan): A mechanistic case study”, Estuarine Coastal and Shelf Science, Vol. 73, p.p. 781-791.
Trannum, H.C., Olsgard, F., Skei, J.M., Indrehus, J., Øverås, S. and Eriksen, J., 2004, “Effects of copper, cadmium and contaminated harbour sediments on recolonisation of soft-bottom communities”, Journal of Experimental Marine Biology and Ecology, Vol. 310, p.p. 87-114.
Tsai, T.T., Kao, C.M., Yeh, T.Y., Liang, S.H. and Chien, H.Y., 2009, “Remediation of fuel oil-contaminated soils by a three-stage treatment system”, Environment Engineering Science, Vol. 26, p.p. 651-659.
Uludag-Demirer, S. and Bowers, A.R., 2000, “Adsorption/reduction reactions of trichloroethylene by elemental iron in the gas phase: The role of water”, Environmental Science and Technology, Vol. 34, p.p. 4407-4412.
U.S. EPA., 2005, “Contaminated sediment remediation guidance for hazardous waste sites”, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response OSWER., EPA-540-R-05-012.
Villa, R.D., Trovo, A.G. and Pupo Nogueira, R.F., 2008, “Environmental implication of soil remediation using the Fenton process”, Chemosphere, Vol. 71, p.p. 43-50.
Wang, S., Jin, X., Bu, Q., Jiao, L. and Wu, F., 2008, “Effects of dissolved oxygen supply level on phosphorus release from lake sediments”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 316, Issue: 1-3, p.p. 245-252.
Watts, R.J., Michael, K.F., Kong, S.H. and Amy, L.T., 2000, “A foundation for the risk-based treatment of gasoline-contaminated soils using modified Fenton’s reaction”, Journal of Hazardous Materials, Vol. 76, p.p. 73-89.
Watts, R.J., Quen, N.H. and Amy, L., 2003, “Effect of contaminant hydrophobicity on hydrogen peroxide dosage requirements in the Fenton-like treatment of soil”, Journal of Hazardous Materials, Vol. 102, p.p. 277-289.
Xu, S.R., Zhao, Z.Y., Li, X.Y. and Gu, J.D., 2004, “Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton’s reagent”, Chemosphere, Vol. 55, p.p. 73-79.
Yang, Y., Wang, P., Shi, S. and Liu, Y., 2009, “Microwave enhanced Fenton-like process for the treatment of high concentration pharmaceutical wastewater”, Journal of Hazardous Materials, Vol. 168, p.p. 238-245.
Yeh, C.K., Kao, Y.A. and Cheng, C.P., 2002, “Oxidation of chlorophenols in soil at natural pH by catalyzed hydrogen peroxide: the effect of soil organic matter”, Chemosphere, Vol. 46, p.p. 67-73.
Yeh, C.K., Hsu, C.Y., Chiu, C.H. and Huang, K.L., 2008, “Reaction efficiencies and rate constants for the goethite-catalyzed Fenton-like reaction of NAPL-form aromatic hydrocarbons and chloroethylenes ”, Journal of Hazardous Materials, Vol. 151, p.p. 562-569.
工業技術研究院環境與安全衛生技術發展中心,2003,土壤中總石油碳氫化合物(TPHs)檢測之研究,EPA-92-E3S4-02-01。
經濟部工業局,2007,石油碳氫化合物土壤及地下水污染預防與整治技術手冊。
經濟部能源局,2004,能源統計手冊,ISSN 1726-3743,p60-63。
丁啟東,1989,「河川底泥耗氧速率之研究」,碩士論文,國立成功大學環境研究所,台南。
楊仁智,2006,「針鐵礦催化之Fenton-like反應去除95汽油污染物之評估」,碩士論文,國立屏東科技大學環境工程與科學系研究所,屏東。
梁書豪,2006,「以Fenton-like氧化處理受燃料油污染之土壤」,碩士論文,國立中山大學環境工程研究所,高雄。
林世平,2004,「改良電壓操作方式對電動力處理受污染底泥之影響」,碩士論文,國立中興大學環境工程學系,台中。
林財富、鄭仲凱,2003,「現地化學氧化技術之發展與案例分析」,第八屆土壤及地下水污染整治研討會論文集,第127-140頁。
凌慧紋,2004,「以生物淋溶法處理受重金屬污染之河川底泥過程中底泥物化因子的變化」,碩士論文,嘉南藥理科技大學環境工程與科學系,台南。
蔡在唐、梁書豪、簡華逸、高志明、葉琮裕,2007,「以串聯式整治列車系統處理受燃料油污染之土壤」,工業污染防治,第102期,第33-48頁。
葉桂君、陳韋舜、許啟裕、楊偉崙,2003,「Fenton-like氧化復育技術中含氯乙烯污染物與氫氧自由基反應係數之探討」,第一屆土壤及地下水污染整治研討會論文集,第2-35。
葉桂君、陳韋舜、陳偉一、陳家銘,2003,「中性pH條件下Fenton-like反應不同鐵氧礦物催化過氧化氫之氫氧自由基生成」,第八屆土壤及地下水污染整治研討會論文集,第261-270。
張雅筑,2007,「以生質燃料及能源作物對遭受重油污染土壤進行植物修復之研究」,碩士論文,國立中山大學海洋環境及工程學系研究所,高雄。
林宏達,2003,「以植物復育技術處理遭受溢油污染濕地土壤之研究」,碩士論文,國立中山大學海洋環境及工程學系研究所,高雄。
蘇群仁,2000,「不同粒徑底泥顆粒中重金屬分布特性之研究」,碩士論文,國立交通大學環境工程研究所,新竹。
吳先琪,2000,「基隆河毒性物質與與底泥再利用」,新世紀水的關懷台北論壇。
劉雲翔,2007,「土壤有機質對四氯乙烯吸/脫附行為之研究」,碩士論文,弘光科技大學環境工程研究所,台中。
劉進參,2006,「以堆肥法復育受燃料油污染土壤」,碩士論文,長榮大學職業安全與衛生研究所,台南。
經濟部工業局,2006,光電材料及元件製造業土壤及地下水污染預防與整治技術手冊。
行政院環境保護署環境檢驗所,http://www.niea.gov.tw。
行政院環境保護署,2006,「毒性化學物質環境流布背景調查計畫」,EPA-95-J103-02-101。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.90.185
論文開放下載的時間是 校外不公開

Your IP address is 3.144.90.185
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code