Responsive image
博碩士論文 etd-0907109-113605 詳細資訊
Title page for etd-0907109-113605
論文名稱
Title
氮化鋅薄膜的熱處理影響與其PN接面的特性分析
The Effects of Heat Treatments on Zinc Nitride Thin Films and the PN Junction Characterization
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
46
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-05-13
繳交日期
Date of Submission
2009-09-07
關鍵字
Keywords
氮化鋅、p-n 接面、反應式濺鍍、熱處理
zinc nitride, heat treatment, reactive sputtering, p-n junction
統計
Statistics
本論文已被瀏覽 5686 次,被下載 2390
The thesis/dissertation has been browsed 5686 times, has been downloaded 2390 times.
中文摘要
由於鋅的化合物是寬能隙,因此可應用於可見光及紫外光的光電應用,被廣泛的探討及研究以及應用。先前文獻指出氮化鋅是一個n型並且為直接能隙的半導體材料,至今研究此材料並不多。氮化鋅有低電阻、高的電子遷移率的特性,因製程條件方法不同,其能隙從1.23 eV 至 3.2 eV 都有被備置出來。本論文,利用熱處理方式成功的成長出氮化鋅 p-n 接面,其起始電壓大約為1 V。氮化鋅薄膜是利用反應式射頻磁控濺鍍的方式成長,所鍍出來的薄膜電性呈現n型。經過爐管熱處理在空氣中300℃、3個小時後,發現電性轉變為p型。經熱處理後的氮化鋅呈現非常低的電阻率(2.2×10-2 Ω-cm)以及高的載子濃度 (3.88×1019 cm-3),而氮化鋅的光學能隙可隨溫度由1.1 eV 至 1.6 eV調變。本論文很成功的藉由控制熱處理溫度備製出不同的氮化鋅之電性以及能隙 。
Abstract
There are many intensive researches for zinc compounds due to their wide band gaps and potential applications in visible and UV optoelectronic technologies. Zinc nitride is a n-type semiconductor material having a direct band gap, and is not widely studied. Previous papers reported that zinc nitride is a n-type semiconductor having low resistivity and high electron mobility. Its band gap varies from 1.23 eV to 3.2 eV depending on the process condition. In this work, we successfully fabricated zinc nitride p-n junction by heat treatment on zinc nitride films. The threshold voltage of p-n junction is about 1 V. The Zinc nitride films were prepared by reactive RF magnetron sputtering. The as-grown zinc nitride thin film is a n-type material. It is found that the film treated at 300℃ for 3 hours can be changed to a p-type material. The zinc nitride has a very low resistance (2.2×10-2 Ω-cm) and high carrier concentration (3.88×1019 cm-3) after the heat treatment. The optical band gap of zinc nitride was determined as a direct band gap varying from 1.1 eV to 1.6 eV according to the temperature of heat treatment. The zinc nitride was successfully prepared with various electrical characteristics and band gaps by controlling the temperature of heat treatment.
目次 Table of Contents
中文摘要 ...............................................................................................................I
Abstract ............................................................................................................. II
目錄 ............................................................................................................III
圖目錄 .............................................................................................................V
Chaper 1 Introduction ..........................................................................................1
1-1 Review .................................................................................................1
1-2 Theorem...............................................................................................5
1.2.1 Van der Pauw Resistivity Measurement .....................................5
1.2.2 Hall Effect.....................................................................................7
Chaper 2 Experiment Detail.................................................................................9
2-1 Introduction of Experiment Equipments .............................................9
2.1.1 Sputter System ..............................................................................9
2.1.2 Hall Measurement System..........................................................11
2-2 Experiments Process..........................................................................12
2.2.1 Fabrication of Zinc Nitride Films...............................................12
2.2.2 Heat treatment on Zinc nitride films...........................................12
2.2.3 Fabrication of P-N Junctions ......................................................13
Chaper 3 Results and Discussions .....................................................................15
3-1 Structural Properties ..........................................................................15
3-2 Electrical Properties...........................................................................19
3-3 Optical Properties ..............................................................................22
3.3.1 Transmittance Spectra ................................................................22
3.3.2 Photoluminescence .....................................................................26
3.3.3 FTIR Analysis.............................................................................29
3-4 Characterizations of P-N Junction.....................................................31
Chaper 4 Conclusions ........................................................................................33
Reference ............................................................................................................34
參考文獻 References
[1] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H Kind, E. weber, R. Russo and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,“ Science, 292, 1897 (2001).
[2] R. T. Zaera, M. A. Ryan, A. Katty, G. Hodes, S. bastide and C. L. Clement, “Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta solar cell,” C. R. Chimie., 9 , 717 (2006).
[3] L. Luo, Y. Zhang, S .S. Mao and L. Lin, “Fabrication and characterization of ZnO nanowires based UV photodiodes,” Sensors and actuators A, 127, 201 (2006).
[4] F. S. Hickernell, “Dc triode sputtered zinc oxide surface elastic wave transducers,” J. Apple. Phys., 44, 1061 (1973).
[5] Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys., 94, 3675 (2003).
[6] W. C. Hughes, W.H. Rowland, Jr., M.A.L. Johnson et al.,” Molecular beam epitaxy growth and properties of GaN films on GaN/SiC substrates,” Vac. Sci Technol. B, 13, 1571 (1995).
[7] X. W. Sun, R.F. Xiao, H. S. Kwok, “Epitaxial growth of GaN thin film on sapphire with a thin ZnO buffer layer by liquid target pulsed deposition,” J. Appl. Phys., 84, 10 (1998).
[8] S. Nakamura, T. Mukai, M. Senoh, “Candela growth of GaN thin film on sapphire with a thin ZnO buffer layer by liquid target pulsed laser deposition,” Appl. Phys Lett., 64, 13 (1994).
[9] R. Juza and H. Hahn,,“ Über die Kristallstrukturen von Zn3N2, Cd3N2 und Ge3N4. Metallamide und Metallnitride. IX. Mitteilung,“ Z. Anorg. Allg. Chem., 224, 125 (1940).
[10] K. Kuriyama, Yukimi Takahashi, and F. Sunohara, “Optical band gap of Zn3N2 films,” Phys. Rev. B, 48, 2781 (1993).
[11] M. Futsuhara, K. Yoshioka, O. Takai, ”Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering,” Thin Solid Thins, 322, 274 (1998)
[12] M. Futsuhara, K. Yoshioka, and O. Takai, ”Optical properties of zinc oxynitride thin films,” Thin Solid Films, 317, 322 (1998).
[13] F. Zong, H. Ma, J. Ma, W. Du, X. Zhang, H. Xiao, and F. Ji, “Structural properties and photoluminescence of zinc nitride nanowires,” Appl. Phys. Lett., 87, 233104 (2005).
[14] R. Long, Y. Dai, L. Yu, M. Guo, and B. Huang, “Structural, Electronic, and Optical Properties of Oxygen Defects in Zn3N2,” J. Phys. Chem. B, 111, 3379-3383 (2007).
[15] D. Wang,; Y. C. Liu, R. Mu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, X. W. Fan, “The photoluminescence properties of ZnO:N films fabricated by thermally oxidizing Zn3N2 films using plasma-assisted metal-organic chemical vapour deposition,“ J. Phys.: Condens. Matter, 16, 4635 (2004).
[16] V. Kambilafka, P. Voulgaropoulou, S. Dounis, E. Iliopoulos, M. Androulidaki, V. Sály, M. Ružinsky, E. Aperathitis, ”Thermal oxidation of n-type ZnN films made by RF-sputtering from a zinc nitride target, and their conversion into p-type films,“ Superlattices and Microstructures, 42, 55-61 (2007).
[17] A. Kobayashi, O.G. Sankey, J.D. Dow,” Deep energy levels of defects in the wurtzite semiconductors AIN, CdS, CdSe, ZnS, and ZnO,” Phys. Rev. B, 946 (1983).
[18] Dieter K. Scharoder, “Semiconductor material and device characterization,” A Wiliey-Interscience Publication, New York, 1990.
[19] 施敏著,王調元譯,「半導體元件物理與製作技術」,第二版,國立交通大學出版社,新竹市,2003。
[20] W. Du, F. Zong, H. Ma, J. Ma, M. Zhang, X. Feng, H. Li, Z. Zhang, and P. Zhao,” Optical band gap of zinc nitride films prepared by reactive rf magnetron sputtering,” Cryst. Res. Technol., 41, 9, 889 (2006).
[21] F. Zong, H. Ma, C. Xue, H. Zhuang, X. Zhang, H. Xiao, J. Ma, F. Ji,” Synthesis and thermal stability of Zn3N2 powder,” Solid State Commun., 132, 512-525 (2004).
[22] E. Kaminska, A. Piotrowska, J. Kossut, A. Barcz, R. Butkute, W. Dobrowolski, E. Dynowska, R. Jakiela, E. Przezdziecka, R. Lukasiewicz, M. Aleszkiewicz, P. Wojnar, E. Kowalczyk, “Transparent p-type ZnO films obtained by oxidation of sputter-deposited Zn3N2”, Solid State Commun., 135, 11-15 (2005).
[23] K. Ahn, Y. Yan, and M. Al-Jassim, ”Band gap narrowing of ZnO:N films by varying rf sputtering power in O2/N2 mixtures,” J. Vac. Sci. Technol. B, 25, 4 (2007).
[24] L. Wu , Y. Wu , X. Pan , F. Kong, ”Synthesis of ZnO nanorod and the annealing effect its photoluminescence property,” Optical Materials, 28, 418 (2006).
[25] B.Y. Man, C. Yang, H. Z. Zhuang, M. Liu, X. Q. Wei, H. C. Zhu, and C. S. Xue, “Effects of ZnO buffer layers on the fabrication of GaN films using pulsed laser deposition”, J. Appl. Phys., 101, 093519 (2007).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code