Responsive image
博碩士論文 etd-0907109-141241 詳細資訊
Title page for etd-0907109-141241
論文名稱
Title
多階非球面微透鏡設計製作於OLED應用
Design and fabrication of multi-level aspherical microlens for OLED
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-29
繳交日期
Date of Submission
2009-09-07
關鍵字
Keywords
多道微影、多階非球面微透鏡、高深寬比、高填充因子
multi-level aspherical microlens, FRED, high fill factor, multi-lithography, high aspect ratio
統計
Statistics
本論文已被瀏覽 5685 次,被下載 0
The thesis/dissertation has been browsed 5685 times, has been downloaded 0 times.
中文摘要
有機發光二極體(Organic light-emitting diodes,OLEDs)被視為下一世紀光源,而提升有機發光元件的外部量子效率已經廣泛的被研究,對於有機發光元件的玻璃基板表面貼附微結構陣列而破壞內部全反射,是一種有效改善外部量子效率的方法。
本論文提出設計與製作多階非球面無縫微透鏡陣列應用於有機發光元件,有別於一般球面微透鏡,多階非球面無縫微透鏡陣列可達到高深寬比(high aspect ratio)且高填充因子(high fill factor),更有利於提升有機發光元件的外部量子效率。
首先利用FRED光學模擬軟體,經由光線追跡的方法,模擬不同幾何形狀的微結構陣列貼附於有機發光元件時的光學特性,對微結構的各參數作系統性的分析探討:曲面形狀、排列方式、特徵尺寸等,在模擬參數設計中,找出最佳之幾何形狀,再以LIGA-like製程方式進行製作,藉由微影、熱回流、濺鍍、電鑄、PDMS微模造、UV光固化技術來完成,主要製程特色利用多道微影(multi-lithography)方式製作多階且為高深寬比的微結構,其近似所設計之非球面微透鏡,可達到批次製造的優點。
最後將製作出的多階非球面微透鏡(multi-level aspherical microlens)陣列薄膜貼附於有機發光元件表面上,進行光電特性量測,並將實驗跟模擬結果進行比對,已證實本研究之正確性。
Abstract
Organic light-emitting diodes (OLEDs) are regarded as next-generation light sources. The enhancement of external quantum efficiency of OLEDs has been investigated widely. It is an effective method of improving the external quantum efficiency, which destroys the phenomenon of total internal reflection inside the OLEDs by attaching microlens array to the surface of the glass substrate of the OLEDs.
In this thesis, a multi-level aspherical gapless microlens array was designed and manufactured, and it was applied to OLEDs. In contrast with a spherical microlens array, the multi-level aspherical gapless microlens array can achieve a form of high aspect ratio and high fill factor, and they can enhance the external quantum efficiency of OLEDs.
At first, aspherical microlens arrays with different parameters, including shapes of curved surface, layouts and feature dimensions, were simulated by optical simulation software, FRED. The aspherical microlens arrays which were attached to an OLED were simulated with a ray tracing method. Then, an optimal geometry and layout were found out. After simulation, a film with multi-level aspherical microlens array was fabricated by a LIGA-like process, including lithography, electroforming, PDMS (Polydimethylsiloxane) micro-molding and UV (Ultraviolet) -cured techniques. The characteristic in this process was to use multi-lithography to fabricate a microlens array with multi-level and high aspect ratio. The shape of multi-level was similar to the design, and the process can achieve the advantage of batch manufacture.
Finally, the films with different multi-level aspherical microlens array were attached to an OLED to measure the optical-electric properties. The measured results were compared with simulation and confirmed them.
目次 Table of Contents
目錄 I
圖目錄 IV
表目錄 X
摘要 XI
英文摘要 XII
第一章 導論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
第二章 非球面微透鏡陣列設計與製作理論 9
2.1 簡介OLED基本知識 9
2.2 非球面微透鏡陣列之設計理論 15
2.3 非球面微透鏡陣列之實驗理論 17
第三章 設計多階非球面微透鏡陣列 22
3.1 光學軟體簡介 22
3.2 FRED光學系統模擬流程 22
3.3 OLED之光學模組建立流程 24
3.4 方形基底無縫微透鏡陣列 29
3.5 三角形基底無縫微透鏡陣列 35
3.6 六角形基底無縫微透鏡陣列 38
3.7 圓形基底微透鏡陣列 41
3.8 光罩設計 45
第四章 實驗方法與步驟 49
4.1 製程步驟 49
4.2 黃光微影製程 50
4.3 熱回流 53
4.4 電鑄製程 54
4.5 PDMS微模造製程 55
4.6 紫外光固化技術 56
4.7 光電特性量測 56
第五章 實驗結果與討論 58
5.1 黃光製程結果 58
5.2 熱回流製程結果 64
5.3 電鑄製程結果 66
5.4 PDMS與UV膠翻模結果 69
5.5 光電特性量測結果 70
5.6 量測結果與模擬值作比較 73
第六章 結論與未來展望 76
6.1 結論 76
6.2 未來展望 77
參考文獻 78
參考文獻 References
1. B. W. D'Andrade, R. J. Holmes, and S. R. Forrest, Efficient Organic Electrophosphorescent White-Light-Emitting Device with a Triple Doped Emissive Layer. Advanced Materials, 2004. 16(7): p. 624-628.
2. C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light emitting device. Journal of Applied Physics, 2001. 90(10): p. 5048-5051.
3. Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, S. R. Forrest, Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature, 2006. 440(7086): p. 908-912.
4. N. K. Patel, S. Cinà, and J. H. Burroughes, High-efficiency organic light-emitting diodes. Selected Topics in Quantum Electronics, IEEE Journal of, 2002. 8(2): p. 346-361.
5. T. Yamasaki, K. Sumioka, and T. Tsutsui, Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium. Applied Physics Letters, 2000. 76(10): p. 1243-1245.
6. S. Möller and S. R. Forrest, Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. Journal of Applied Physics, 2002. 91(5): p. 3324-3327.
7. B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, Increased Efficiency and Controlled Light Output from a Microstructured Light-Emitting Diode. Advanced Materials, 2001. 13(2): p. 123-127.
8. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, A. Scherer, 30% external quantum efficiency from surface textured, thin-film light-emitting diodes. Applied physics letters 1993. 63(16): p. 2174-2176.
9. J. Gruner, R. Cacialli, R. H. Friend, Emission enhancement in single-layer conjugated polymer microcavities. Journal of Applied Physics, 1996. 80(1): p. 207-215.
10. L. Lin, T. K. Shia and C.-J. Chiu, Silicon-processed plastic micropyramids for brightness enhancement applications. Journal of Micromechanics and Microengineering, 2000: p. 395-400.
11. H.-Y. Lin, J.-H. Lee, M.-K. Wei, C.-L. Dai, C.-F. Wu, Y.-H. Ho, H.-Y. Lin and T.-C. Wu, Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films. Optics Communications, 2007. 275(2): p. 464-469.
12. T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, M. Yokoyama, Doubling Coupling-Out Efficiency in Organic Light-Emitting Devices Using a Thin Silica Aerogel Layer. Advanced Materials, 2001. 13(15): p. 1149-1152.
13. C. Liu, V. Kamaev, Z. V. Vardeny, Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array. Applied Physics Letters, 2005. 86(14): p. 143501-3.
14. C. F. Madigan, M.-H. Lu and J. C. Sturm, Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification. Applied Physics Letters, 2000. 76(13): p. 1650-1652.
15. M.-K. Wei and I.-L. Su, Method to evaluate the enhancement of luminance efficiency in planar OLED light emitting devices for microlens array. Opt. Express 2004. 12(23): p. 5777-5782.
16. H. Peng, Y. L. Ho, X.-J. Yu, M. Wong and H.-S. Kwok, Coupling efficiency enhancement in organic light-emitting devices using microlens array-theory and experiment. Display Technology, Journal of, 2005. 1(2): p. 278-282.
17. M.-K. Wei, I.-L. Su, Y.-J. Chen, M. Chang, H.-Y. Lin and T.-C. Wu, The influence of a microlens array on planar organic light-emitting devices. Journal of Micromechanics and Microengineering, 2006. 16(2): p. 368-374.
18. Y. Sun and S. R. Forrest, Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography. Journal of Applied Physics, 2006. 100(7): p. 073106-6.
19. Y. R. Do, Y.-C. Kim, Y.-W. Song, and Y.-H. Lee, Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure. Journal of Applied Physics, 2004. 96(12): p. 7629-7636.
20. M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai and T.-C. Wu, Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array. Journal of Optics A: Pure and Applied Optics, 2008. 10(5): p. 055302.
21. H. Kwon, Y. Yee, C.-H. Jeong, H.-J. Nam, J.-U Bu, A high-sag microlens array film with a full fill factor and its application to organic light emitting diodes. Journal of Micromechanics and Microengineering, 2008. 18 065003 (6pp) (6).
22. J.-H. Lee, Y.-H. Ho, K.-Yu. Chen, H.-Y Lin, J.-H. Fang, S.-C. Hsu, J.-R. Lin, Mao-Kuo Wei, Efficiency improvement and image quality of organic light-emitting display by attaching cylindrical microlens arrays. Optics Express, 2008. 16(26): p. 21184-21190.
23. H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Yi Lin, J.-H. Tsai, T.-C. Wu, Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices. Optics Express, 2008. 16(15): p. 11044-11051.
24. M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai and T.-C. Wu, Efficiency improvement and spectral shift of an organic light-emitting device with a square-based microlens array. Optics Communications, 2008. 281(22): p. 5625-5632.
25. H. Greiner, Light Extraction from Organic Light Emitting Diode Substrates: Simulation and Experiment Jpn. Journal of Applied Physics, 2007. 46(7): p. 4125-4137.
26. C.-C. A. Chen, C.-M. Chen, J.-R. Chen, Toolpath generation for diamond shaping of aspheric lens array. Journal of Materials Processing Technology. 2007. 192-193: p. 194–199.
27. Ph. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, Design, fabrication and testing of microlens arrays for sensors and microsystems. Journal of Optics A: Pure and Applied Optics, 1997. 6(97): p. 617-636.
28. S. I. Chang, J. B. Yoon, H. Kim, J. J. Kim, B. K. Lee, and D. H. Shin, Microlens array diffuser for a light-emitting diode backlight system. Optics Letters. 2006. 31(20): p. 3016-3018.
29. F. Li, X. Li, J. Y. Zhang, BaiEnhanced light extraction from organic light-emitting devices by using microcontact printed silica colloidal crystals. Organic Electronics, 2007. 8(5): p. 635-639.
30. A. Kovalskiy, M. Vlcek, H. Jain, A. Fiserova, C.M. Waits, and M. Dubey, Development of chalcogenide glass photoresists for gray scale lithography. Journal of Non-Crystalline Solids. 2006. 352: p. 589–594.
31. K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, Fabrication of three-dimensional microstructure using maskless gray-scale lithography. Sensors and Actuators A. 2006. 130–131: p. 387–392.
32. A. Kovalskiy, H. Jain, J. Neilson, M. Vlcek, C.M. Waits, W. Churaman, and M. Dubey, On the mechanism of gray scale patterning of Ag-containing As2S3 thin films. Journal of Physics and Chemistry of Solids. 2007. 68: p. 920–925.
33. L.-F. Shi, X.-C. Dong, Q.-L. Deng, X.-G. Luo and C.-L. Du, Formation for bass-relief microprofiles based on an analytic formulation. CHIN. PHYS. LETT. 2007. 24(10): p. 2867-2869.
34. 劉永田和山形 豐,「非球面超精密切削加工之實務介紹」,第五屆精密製造研討會,台灣 高雄,2006。
35. 庄司克雄,「超精密加工と非球面加工」,NTS, ISBN4-8043-059-X C3050, 2004.
36. 楊龍杰,「認識微機電」,滄海書局出版,中華民國九十年九月。
37. 殷宏林、游智勝、楊啟榮、胡一君、周曉宇,「微機電系統技術與應用」,國科會精密儀器中心出版,中華民國九十二年七月。
38. 悠景科技股份有限公司, http://www.univision.com.tw/hr-04-01.asp
39. 陳金鑫、黃孝文,「OLED-夢幻顯示器」,五南圖書出版,中華民國九十六年十二月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.31.240
論文開放下載的時間是 校外不公開

Your IP address is 3.141.31.240
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code