Responsive image
博碩士論文 etd-0907110-112228 詳細資訊
Title page for etd-0907110-112228
論文名稱
Title
平面紊亂射流受反向非線性前進波作用後之速度與溫度分佈之研究
Velocity and temperature distributions of turbulent plane jet interaction with the nonlinear oppositive progressive wave
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-29
繳交日期
Date of Submission
2010-09-07
關鍵字
Keywords
平面紊亂射流、非線性波
non-linearity of waves, plane jet
統計
Statistics
本論文已被瀏覽 5675 次,被下載 0
The thesis/dissertation has been browsed 5675 times, has been downloaded 0 times.
中文摘要
本文延伸陳 (1980)及Hwung et al. (1981)平面紊亂射流與微小振幅波作用後
速度與溫度分佈之研究,進一步考慮波浪非線性作用之影響,當平面紊亂射流與
二階Stokes 波作用後,於波浪週期時間平均的穩定狀態下;將波浪視為一外力
導入平面紊亂射流之運動方程式中,依射流動量守衡,及引入波浪輻射應力
(radiation stress),藉此運動特性可以了解在射流與波浪作用後任意斷面中心軸處
之動量交互作用關係;解析出射流在波浪作用後之流場於波浪時間平均下其內之
各種特性的空間變化,以及它們隨波浪位相起伏之時空週期性的變化情況。
受反向非線性前進波之動量作用於平面紊亂射流下,會使流場之流速分佈隨
射流口距離之增長而逐漸下降的速度動量比函數存在,其波浪一階量為α1(x),
二階量為2α (x),此比例函數控制流場之速度分佈與溫度分佈之傳輸至臨界位置
止;當相對水深越小或波浪越大(即起始波流速比愈大)時,波浪二階量所生之此
效應影響就愈大,固而會使流場之臨界位置更往內縮;而所對應的流場邊界則愈
往橫側方向擴大。流場之溫度分佈的變化,主要是受到速度分佈的影響,故其中
心軸溫度差[ ]m ΔT 分佈亦與中心軸速度分佈相同。根據實驗及理論得知,平面紊亂
射流受波浪作用後,其週期時間平均之速度與溫度為高斯分佈,黃 et al(1981)
之理論與試驗得平面紊亂射流受微小振幅波作用後之速度分佈係數1 c = 0.105 ,
溫度分佈係數2 c = 0.148 。而本研究之平面紊亂射流受反向非線性波作用與試驗
結果分析得速度分佈係數1 c = 0.124 ,溫度分佈係數2 c = 0.152 。可依各種出水口
流速與波浪週期、相對水深及波浪尖銳度之情形下得其理論解和相對應之邊界
值。
於本文的適足性上的驗證,與實驗驗證比對之MSE 值皆比線性解更趨近試
驗值,經無因次化分係各物理量間的關係後可得知平面紊亂射流受反向二階非線
波作用之影響程度,則可進一步描述流場內的變化情形。
Abstract
The paper extends the analytical results obtained by Hwung et al.
(1981) and further considers the non-linearity of waves to investigate
variation horizontal velocity, temperature distribution induced by
interaction of 2-D plane jet and waves. On the steady state, the nonlinear
wave is considered as external force in motion equations, the property of
momentum conservation of jet flow, and radiation stress are applied to
analyze the interaction of waves- jet flow in arbitrary profile. The scale
function 1
ε α1(x) , 2
2ε α (x) between the variation function f (x,y) and
velocity distribution can also be obtained. The non-dimensional
theoretical solution is also useful to estimate the relative characteristics in
the physical field. The momentum equation and velocity distribution of
interaction without property of temperature diffusion are employed to
find the temperature distribution for arbitrary sections.
Based on the experiments and theory solution obtained by Hwung et
al. (1981) it is found that time-averaged horizontal velocity and
temperature are Gaussian distribution, the coefficient of horizontal
velocity 1 c , and temperature distribution 2 c are 0.105, 0.148, respectively.
In the present, two coefficients considered as non-linearity of waves
1 c = 0.124 and 2 c = 0.152 are determined. In other words, it is shown that
exact solution and boundary effect included non-linearity of waves is
related to velocity of jet flow, wave periods, relative depth and steepness
of waves respectively.
Comparing with experiments indicated that the analytical solution of
the present for MSE is well confirm the experimental results and better
than linear results obtained by Hwung et al. (1981) The influence due to
interaction of 2-D turbulent jet flow and Stokes waves can be obtained by
using dimension analysis. Moreover, the related properties inside the flow
also can be estimated.
目次 Table of Contents
中文摘要……………………………………………………………………………...I
英文摘要…………………….........................................................................Ⅱ
目錄…………………………………………………………………………………III
圖目錄……………………………………………………………………………....IV
符號說明…………………………………………………………………………...VII
第一章 緒論……………………………………………………………………….. 1
1-1 研究目的……………………………………………………………… 1
1-2 流場特性描述………………………………………………………… 1
1-3 文獻回顧……………………………………………………………… 4
1-4 本文組織架構………………………………………………………….6
第二章 紊亂射流基本理論及流場基本假設………………………………………7
2-1 平面紊亂射流基本理論……………………………………………… 7
2-2 動量積分方程式……………………………………………………… 8
2-3 流場基本假設………………………………………………………… 9
第三章 平面紊亂射流受反向非線性前進波作用後之速度分佈解析…………..12
第四章 溫度分佈之理論…………………………………………………………..37
第五章 理論比較與特性描述……………………………………………………..45
5-1 理論驗證………………………………………………………………45
5-2 特性描述………………………………………………………………56
第六章 結論與建議………………………………………………………………..66
6-1 結論……………………………………………………………………66
6-2 建議……………………………………………………………………67
參考文獻……………………………………………………………………………68
參考文獻 References
1. Abramovich, G.N., (1963) “The theory of turbulent jets” English translation
publish by M.I.T. Press, Massachusetts.
2. Anwar, H.O., (1969) “Behavior of buoyant jet in calm fluid” J. Hydraulics Div.
A.S.C.E., vol. 95, pp. 1289-1303.
3. A. Wada, N. Katano and M. Kadoyu (1976) “Study on adaptability of prediction
methods of simulation analysis for diffusion of discharged warm water in the sea”
coastal Engineering in Japan, vol. 19, p.139-161.
4. A. Wada, N. Katano and M. kadoyu (1978) ”Proposal of general purpose
computation chart for diffusion prediction of discharged warm water” E375005
central Research Institute of Electric Power Industry.
5. Barry, Tam, Y.F. and Li, C.W., (2008)“Flow induced by a turbulent jet under
random waves” J. Hydraul. Res. Vol. 46, pp. 820-829
6. Cederwall, K. (1975) “Gross parameter solutions of jets and plumes” J.
Hydraulics Div. A.S.C.E., vol. 101, pp. 489-509.
7. Fick, A. (1855) “On liquid diffusion” Phil. Mag. J. Sci. 10:31-39
8. Fischer, H.B., (1967) “The mechanics of dispersion in natural streams” J.
Hydraulics Div . A.S.C.E., 93; pp.187~216.
9. Fischer, H.B., (1977) “Mixing in inland and coastal waters” Academic Press, Inc.,
New York.
10. Gerald, G.F and Wheatley, P.O., (1989)“Applied Numeried Analysis” Addison
Wiley Publishing Company, Massachusette. Menlo Park.
11. Hof, B., Casimir, W.H., Westerweel, J., Nieuwstadt, F.T.M., Faisst, H., Eckhardt,
B., Wedin, H., Kerswell, R.R. and Waleffe, F., (2004) “Experimental Observation
of Nonlinear Traveling Waves in Turbulent Pipe Flow” Science Vol. 305, no. 5690,
pp. 1594-1598
12. Hwung, H.H., Frederick, Tang, L.W. and Chen, Y.Y., (1981)“Theoretical study of
turbulent plane jet interacting with small amplitude wave” Journal of the Chinese
Institute of Engineers. vol. 4, No. 2. pp113~118.
13. Hwung, H.H.,Lay, C.C., (1979) “Studies on the diffusion coefficient of thermal
pollution from field investigation and Hydraulic experiments” 3th Coastal
Engineering Proceeding in Taiwan pp.249~271.
14. J.J. Leendertse, S.K. Liu & Richard C. Alexander (1973) “A three-dimensional
model for estuaries and coastal seas vol.I, principles of computation”
R-1417-OWRR, The Rand Corporation.
15. Kotsovins, N.E., and List, E.J., (1977) “Plume turbulent buoyant jets, part 1,
integral properties” J. Fluid Mechanics, vol. 81, pp. 25-44.
16. Lamb, H.(1932) “Hydrodynamics” Cambridge Press, sixth edition section 250.
17. List, E.J., and Imberger, J., (1973) “Turbulent entrainment in buoyant jets and
plumes” J. Hydraulics Div. A.S.C.E., vol. 95, pp. 1461-1474.
18. Longuet-Higgins, M.S., Stewart, R.W.,(1960) “Changes in the form of short
gravity waves on long waves and tidal currents” J. Fluid Mech, vol. 8,pp.565~583.
19. Longuet-Higgins, M.S., Stewart, R.W., (1962) “Radiation stress and mass
transport in gravity waves, with application to surf beats” J. Fluid Mech, vol. 13,
pp.481~504.
20. Longuet-Higgins, M.S., Stewart, R.W., (1964) “Radiation stress in water waves: a
physical discussion with applications” Deep-Sea Res. vol. 11, pp.529~562.
21. Longuet-Higgins, M.S., (1970)“Longshore current generated by obliquely incident
sea waves, 1” J.G.R. vol. 75, No. 33, pp.6778~6789.
22. Morton, B.R., (1958) “Forced plumes” J.G.R., vol. 75, pp. 6778-6789.
23. Morton, B.R., Taylor, G.I., and Tuner, J.S., (1958) “Turbulent gravitational
convection from maintained and instantaneous sources” Proceeding of the Royal
Society, London, England, A234, pp. 1-23.
24. Musculus, M.P.B., (2009) “Entrainment waves in decelerating transient turbulent
jets” J. Fluid Mech. Vol. 638, pp. 117-140
25. Rajaratnam, N.,(1976) “Developments in water science 5-turbulent jet” Elsevier
Scientific Publishing Company.
26. Rouse, H., Yih, C.S., and Humphreys, H.W., (1952)“Gravitational convection
from a boundary source” Tellus, vol. 4, pp. 201-210.
27. Schlichting, H.,(1968) “Boundary layer theory”Mc Graw-Hill, New York, 6th
edition, Chapter XXIV.
28. Sun, Z., Liang, S., Zhou, F., Wang, S., (2009)“Experimental study on turbulent
characteristics of a vertical jet in wave environment” Chinese Journal of
Theoretical and Applied Mechanics Vol. 41, pp. 21-27
29. 陳陽益 (1980), 「噴(射)流與波浪傾斜交會作用之研究」 國立成功大學水
利及海洋工程研究所碩士論文。
30. 陳陽益 (1990), 「等深水中兩規則前進重力波列交會之解析」,港灣技術,
第5 期,第1-45 頁。
31. 黃煌煇 (1981) 「平面紊亂射流與微小振幅波作用後速度與溫度分佈之研究」
國立成功大學土木工程研究所博士論文。
32. 許弘莒 (1995) 「潛置浮昇射流受波浪作用之影響研究」 國立中山大學環境
工程研究所碩士論文。
33. 朱佳人 (2003) 「環境流體力學」 科技圖書公司
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.190.156.212
論文開放下載的時間是 校外不公開

Your IP address is 18.190.156.212
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code