Responsive image
博碩士論文 etd-0907110-175213 詳細資訊
Title page for etd-0907110-175213
論文名稱
Title
底層透水之沉箱式結構物對波場影響之研究
Study on Wave Field with Caisson on Multiple Porous Layers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-09-03
繳交日期
Date of Submission
2010-09-07
關鍵字
Keywords
透射、防波堤、沉箱、孔隙
caisson, media size, transmissivity, porous
統計
Statistics
本論文已被瀏覽 5663 次,被下載 5
The thesis/dissertation has been browsed 5663 times, has been downloaded 5 times.
中文摘要
本研究採用沉箱式防波堤,研究波浪和堤之交互作用,以水工模型實驗量測入射波、反射波和透過波,考慮孔隙結構基座在露出靜水面和沒入靜水面的情況下,考慮不同大小粒徑、單層和雙層孔隙介質區,分析其反射率、透射率等消波特性,探討這些情況下的消波效能。

水工試驗方面,以玻璃珠作為孔隙介質,浪波條件考慮符合線性波理論的範圍,水深採用72 公分和40 公分水深兩種,單層粒徑各進行一次試驗,雙層粒徑採用直徑16mm 和35mm 的玻璃珠進行一次試驗,觀測並記錄試驗過程後,進而分析其消波特性。數值解析方面,純水區和孔隙區特徵值的計算採取牛頓法和沃德法,可以確實求解出來,代回延散方程式中驗證亦正確。目前在進行一連串疊代的過程中,在沉箱吃水較深時,尚未收斂。但加大mode 數和降低吃水深,有時可以增加收斂的可能性。由於切割分層數目較前人更複雜,尤其在需要的mode 大的時候,邊界條件組成的矩陣複雜度更
大。在沉箱下孔隙區計算出來的流速,疊代到後來非常大,以至於容易在求解過程中,產生正無限大或負無限大的錯誤。

本文之沉箱式防波堤,於波長較短時,摩擦阻力影響變大,反射率和透射率在波長較短時,有變低的趨勢。波長較長時,摩擦阻力影響變小,且在沉箱的影響下透水性較差,大部分能量反射,消波效能較差。在孔隙區沒入水中時,沉箱式防波堤約可固定消減掉三成到四成的能量;在孔隙區露出水面時,沉箱式防波堤消波效果更好,通常消能三成到七成,最高可以達到約九成左右。沉箱式防波堤反射率較大,透射率卻相當低,對於堤後方水域的保護效果顯著。透射率趨勢和粒徑大小有關,粒徑越小透射率相對越小,但造成之反射率相對較高。雙層粒徑堤跟同水深的其他單粒徑模型相比,消波
效能較好。無論長週期或短週期,雙層粒徑堤的表現較穩定。除了在長週期時,消波效能跳動範圍較大,其他週期都在相對偏低的位置。
Abstract
In the study, wave reflection, transmission, and energy dissipation with a caisson-type breakwater have been investigated experimentally. Three different sizes of grain are used to construct the porous base, they are 16mm, 25mm, and 35mm, respectively.Single and double layers of porous base are considered.

Hydraulic test, porous media choice is glass ball.Wave conditions must be consistent with the scope of the linear wave theory. Two different depths are used to construct,they are 40 cm and 72 cm. Do a single trial of all size. Double size 16mm and 35mm
diameter glass ball is a test. Recording the test process, and then analyze energy
consumption. Water area's characteristics and pore area's characteristics are calculated
by the Newton’s method and the Ward’s method. It is the substitute for the dispersion
equation is also correct. During the course of a series, the draft of caisson is deeper, the
convergence is harder. But the increase and decrease the mode number or the draft, and
sometimes increase the possible of convergence. As the number of cutting layer are
more complex than other predecessors, particularly in the large number of required
mode, when the composition of the matrix of boundary conditions greater complexity.
In the caisson area calculated pore velocity, or on behalf of the later is very large, so it's
easy in the solution process, generate positive infinity or negative infinity error.

As the caisson-type breakwater with a shorter wavelength, the frictional resistance influences bigger. At this time, reflectance and transmittance has the Drop tendency.When the wavelength is longer, the frictional resistance influences smaller. Most of the
energy reflection because the caisson of less permeable. The caisson-type breakwater got the wave force to increase. The effect is bad in the Wave force reduced. If the static water surface above the pore structure, the caisson-type breakwater can be reduction of about 30% to 40% off the energy. If the static water surface under the pore structure, the
caisson-type breakwater wave damping efficiency is better. Usually remove 30% to 70% energy. Sometimes, it’s up to about 90%.Reflectivity of the caisson breakwater is larger, but the transmissivity is lower. For the waters behind the breakwater, the
protective effect is significant. Transmissivity trend is arranged according to media size. As the media size smaller, the transmissivity is smaller, the reflectivity is higher. At the same depth, double-size model compared with other single-size model of the wave
forces reduced is better. Whether long or short period, double-size model's performance is relatively stable. Except to a long cycle time, the wave damping efficiency has a larger range. Other cycles are at the lower position.
目次 Table of Contents
目錄
誌謝…………………………………………………………I
中文摘要……………………………………………………IV
英文摘要……………………………………………………V
圖表目錄……………………………………………………VI
符號說明……………………………………………………IX
第一章緒論............................................................................ 1
1.1 前言................................................................................. 1
1.2 文獻回顧......................................................................... 2
1.3 本文目的......................................................................... 2
1.4 論文架構......................................................................... 3
第二章基本假設和理論推導................................................ 4
2.1 基本假設......................................................................... 4
2.2 控制方程式..................................................................... 4
2.3 邊界值問題..................................................................... 6
2.4 邊界值問題解析............................................................. 8
2.4.1 純水區和介質區的延散方程式.................................. 8
2.4.2 特徵值在垂直方向上的關係................................... 13
2.4.3 未知係數A、B 討論................................................. 14
第三章水工模型試驗佈置與步驟..................................... 24
3.1 試驗設備....................................................................... 24
3.2 試驗配置....................................................................... 25
3.3 試驗步驟....................................................................... 26
3.4 試驗條件....................................................................... 26
第四章試驗分析與討論......................................................32
4.1 資料分析方法................................................................32
4.1.1 反射率分析................................................................32
4.1.2 透射率分析................................................................32
4.1.3 能量消散狀況分析....................................................33
4.2 實驗結果討論...............................................................33
4.2.1 相同粒徑下的比較....................................................33
4.2.2 同水深情況下的比較............................................... 35
4.2.3 尖銳度和反射率、透射率、剩餘能量的討論....... 36
第五章結論與建議............................................................. 54
5.1 結論............................................................................... 54
5.2 建議............................................................................... 54
參考文獻..............................................................................55
附錄一、孔隙介質流場之勢流理論..................................57
附錄二、沉箱式防波堤分析程式碼..................................61
參考文獻 References
1. Black, J.L., C.C. Mei and .C.G.Bray.1971.”Radiation and scattering of water waves by rigid bodies,” J.Fluid Mech, vol.46,pp.151-164.
2. Dalrymple, Robert A., Miguel A. Losada and P.A.Martin.1991,”Reflection and transmission from porous structures under oblique wave attack,” J.Fluid Mech, vol.224, pp.625-644.
3. Goda, C.F. and P.O. Wheatley, 1976, ”Estimation of Incident and Reflected Waves in Random Wave Experiments”, Proc.of 15th ICCE,ASCE,pp.828-845
4. Goda, Y. and Y. Suzuki. 1976. “Estimation of ncident and Reflected Waves in Random Wave Experiments,” Proc. Of 15th ICCE,ASCE, pp.828-845
5. Lee,C.P. 1987,”Wave Interaction with Permmeable Structures”,Ph.D.dissertation, Ocean Engineer program,Civil Engineering Department, Oregon state University, Corvallis, Oregon, USA.
6. Madsen, O.S. 1974 “Wave Transmission Through Porous Structures”,J.of the Waterways, Harbors,and Coastal Engineering Division, ASCE,Voi.100,No. WW3,pp. 169-188.
7. Sarpkaya, T. and M. Isaacson. 1981. Mechanics of Wave Forces on Offshore Structures. Van Nostrand Reinhold Co., NY.
8. Sollitt,C.K. and R.H. Cross. 1972. ”Wave Transmission Through Places Stone Breakwaters”,13th ICCE,pp. 1827-1846,ASCE
9. Steimer,R.B. 1977.”MS Thesis, Department of Civil Engineeing,”Oregon State University, USA
10. Steimer,R.B. and C.K. Sollit. 1978. “Non-Conservative Wave Interaction with Fixed Semi-Immersed Rectangular Structures”,16th ICCE,ASCE,pp.2209-2227.
11. Ward, J.C 1964 “Turbulent flow in porous media,” J. of the Hydraulics Divison, ASCE.
12. 柯文貴,1997,“波浪與浮式透水防波堤之交互作用”,碩士論文,國立中山大學海環系
13. 陳震遠,2000,“大粒徑孔隙結構物內阻力特性之研究”,碩士論文,國立中山大學海環系
14. 涂盛文、邱乾忠,1998,“多層透水堤消波特性之試驗研究”,第二十屆海洋工程研討會論文集,第233~240 頁
15. 林怡成,1997,”透水式潛堤波浪特性之實驗研究”,碩士論文,國立中山大學海環系
16. 李泰興,2007,”離岸多孔隙結構物消波特性之實驗研究”,碩士論文,國立台灣海洋大學河海工程系
17. 李兆芳、劉正琪,1995,”波浪通過透水潛堤之新理論解析”,第十七屆海洋工程研討會論文集,pp.593-606
18. 胡柏笙,2000,”波浪作用下沉箱式防波堤之有限元素分析模式”,碩士論文,國立中興大學土木工程學系
19. 曾韋禎,2008,”公路橋梁沉箱基礎受洪水淘刷破壞模式之研究”,碩士論文,國立成功大學土木工程學系
20. 李姿穎,2008,”沉箱式碼頭受震動力反應分析之研究”,碩士論文,台灣大學土木工程學系
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.189.170.17
論文開放下載的時間是 校外不公開

Your IP address is 18.189.170.17
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code