Responsive image
博碩士論文 etd-0907110-235034 詳細資訊
Title page for etd-0907110-235034
論文名稱
Title
振動輔助切削應用於微磨削之研究
Effect of Machining Parameters in Vibration-Assisted Micro Grinding
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee

口試日期
Date of Exam
2010-08-30
繳交日期
Date of Submission
2010-09-07
關鍵字
Keywords
振動輔助切削、微磨削、微量潤滑
micro grinding, MQL, vibration assisted cutting
統計
Statistics
本論文已被瀏覽 5709 次,被下載 7
The thesis/dissertation has been browsed 5709 times, has been downloaded 7 times.
中文摘要
在切削加工領域中,切削液的使用是普遍的現象;同時也帶來許多負面的影響如增加生產成本、環境危害與影響身體健康等。使用傳統切削 (conventional cutting,CC) 是個好的替代方式,但無法擁有切削液的優點。而振動輔助切削 (vibration assisted cutting,VAC) 則結合了上述兩種切削加工方法的優點。因此本研究以微型鑽石研磨棒振動輔助磨削 (vibration assisted grinding,VAG) 加工SKD61工具鋼為研究方向。討論各種參數下工件表面精度、刀具磨耗並與傳統切削比較。並在振動輔助切削上添加微量潤滑,探討微量潤滑之振動輔助切削的影響。
實驗結果顯示,VAG在1.92 μm/rev低進給有較好的效果,其Ra值達到0.05 μm,具有似鏡面效果。在25000 rpm、進給5.76 μm/rev下會產生chatter,使表面粗糙度Ra值不佳。對轉速的提升,VAG並無太多優勢,只在中轉速25000 rpm才有較明顯的效果。在磨耗上則是VAG較傳統切削為佳,但隨轉速提升抗磨耗能力會快速降低。若在VAG上加入微量潤滑 (MQL),則刀具壽命可延長至少1.5倍,但工件表面粗糙度會較VAG略為上升。改變VAG振動條件其影響也不同:結果顯示,在振動頻率9 kHz下,振幅越大其表面粗糙度越佳。
Abstract
Cutting fluids have some drawbacks, like health hazards, extra manufacturing cost and environmental contamination. To decrease the disadvantages of using cutting fluids, conventional cutting is a better choice. However, conventional cutting has no advantages of using cutting fluids, such as lubrication. Therefore, vibration assisted cutting (VAC) is a new technology to achieve both purposes of the above machining techniques. Hence, the goal of this study focuses on the mechanical performance of vibration assisted grinding (VAG) for micro grinding of SKD61 steel based on tool life and surface finish.
In this study, it is observed that chatter happens under VAG in the condition of feed 5.76 μm/rev. Surface roughness (Ra) for the condition of feed 1.92 μm/rev is better than that of 5.76 μm/rev. The best surface finish is 0.05 μm in this study when the feed is 1.92 μm/rev. Spindle speed does not have significant effect on surface roughness in this study. However, the tool life is short under high spindle speed (35000rpm). Experimental results show that tool life will be prolonged two-thirds for VAG combined with MQL. As changing the amplitude of vibration (for a fixed frequency of 9 kHz) , the larger the amplitude, the better the surface roughness.
目次 Table of Contents
謝誌 i
目錄 ii
圖目錄 iv
表目錄 vi
摘要 vii
Abstract viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 論文架構 3
第二章 文獻探討 4
2.1 超音波振動輔助切削之基本機制 4
2.2 文獻回顧 7
第三章 實驗配置與方法 13
3.1 實驗配置 13
3.2 實驗方法 19
第四章 實驗結果與討論 25
4.1 傳統切削與振動輔助切削對表面精度的影響 25
4.1.1 傳統切削與振動輔助切削在不同進給下對於表面精度之差異 25
4.1.2 傳統切削與振動輔助切削在不同橫向進給下之影響 29
4.1.3 傳統切削與振動輔助切削在不同轉速下之表面精度變化 32
4.2 傳統切削與振動輔助切削對刀具磨耗之影響 36
4.3 振動輔助切削加入MQL對於刀具磨耗的影響 45
4.4 改變振動輔助切削之振動條件對於表面精度的變化 47
第五章 結論 52
參考文獻 54
附錄:實驗設備 58
參考文獻 References
[1] T. Tawakoli, B. Azarhoushang, M. Rabiey, “Ultrasonic assisted dry grinding of 42CrMo4,” The International Journal of Advanced Manufacturing Technology, Vol. 42, pp. 883-891, 2008.
[2] F. Klocke, G. Eisenblätter, “Dry cutting,” Annals of the CIRP- Manufacturing Technology,Vol. 46, pp. 519-526, 1997.
[3] V. S. Sharma, M. Dogra, N. M. Suri, “Advances in the turning process for productivity improvement–a review,” Journal of Engineering Manufacture, Vol. 222, pp. 1417-1442, 2008.
[4] T. Tawakoli, B. Azarhoushang, “Influence of ultrasonic vibrations on dry grinding of soft steel,” International Journal of Machine Tools & Manufacture,Vol. 48, pp. 1585– 1591, 2008.
[5] F. Klocke, O. Rübenach, “Ultrasonic-assisted diamond turning of glass and steel,” International Seminar on Precision Engineering and Microtechnology, pp. 179-190, 2000.
[6] T. Tamura, S. Matsummoto, “Surface integrity of cemented carbides machined by electrical discharge machining after polishing,” Journal of the Japan Society of Electrical Machining Engineers, Vol. 35, pp. 12-18, 2001.
[7] V. Ostasevicius, R. Gaidys, J. Rimkeviciene, R. Dauksevicius, “An approach based on tool mode control for surface roughness reduction in high-frequency vibration cutting,” Journal of Sound and Vibration, Vol. 329, pp. 4866–4879, 2010.
[8] V. I. Babitsky, A. N. Kalashnikov, A. Meadows, A. A. H. P. Wijesundara, “Ultrasonically assisted turning of aviation materials,” Journal of Materials Processing Technology, Vol. 132, pp.157–167, 2003.
[9] G. L. Chern, H. J. Lee, “Using workpiece vibration cutting for micro-
drilling,” The International Journal of Advanced Manufacturing Technology, Vol. 27, pp. 688–692, 2006.
[10] K. Hara, A. Kyusojin, H. Isobe, K. Yanagi, H. Yoshihara, “Study on mirror surface grinding of die steel by using ultrasonically assisted diamond tool,” International Conference on Leading Edge Manufacturing in 21st Century, pp. 631-634, 2005.
[11] H. L. Zhang, J. H. Zhang, M. Y. Huo, “Study on ultrasonic vibration assisted grinding in theory,” Materials Science Forum, Vol. 532-533, pp 773-776, 2006.
[12] C. Nath, M. Rahman, S. S. K. Andrew, “A study on ultrasonic vibration cutting of low alloy steel,” Journal of Materials Processing Technology,Vol. 192-193,pp. 159-165, 2007.
[13] S. Koshimizu, “Ultrasonic vibration-assisted cutting of titanium alloy,” Key Engineering Materials, Vol. 389-390, pp 277-282, 2009.
[14] N. Ahmed, A. V. Mitrofanov, V. I. Babitsky, V. V. Silberschmidt, “Analysis of forces in ultrasonically assisted turning,” Journal of Sound and Vibration, Vol. 308, pp. 845-854, 2007.
[15] Z. W. Zhong, G. Lin, “Ultrasonic assisted turning of an aluminium -
based metal matrix compositereinforced with SiC particles,” The International Journal of Advanced Manufacturing Technology, Vol. 27, pp. 1077-1081, 2007.
[16] G. F. Gao, B. Zhao, F. Jiao, C. S. Liu, “Research on the influence of the cutting conditions on the surface microstructure of ultra-thin wall parts in ultrasonic vibration cutting,” Journal of Materials Processing Technology, Vol. 129, pp. 66-70, 2002.
[17] J. Chen, G. Tian, Y. Chi, M. Liu, D. Shan, Y. Liu, “Surface roughness and microstructure in ultrasonically assisted turning of W-Fe-Ni alloy,” Manufacturing Systems and Technologies for the New Frontier, pp. 441-444, 2008.
[18] Y. S. Liao, Y. C. Chen, H. M. Lin, “Feasibility study of the ultrasonic vibration assisted drilling of Inconel superalloy,” International Journal of Machine Tools & Manufacture, Vol. 47, pp. 1988-1996, 2007.
[19] B. Azarhoushang, J. Akbari, “Ultrasonic-assisted drilling of Inconel 738-LC,” International Journal of Machine Tools & Manufacture, Vol. 47, pp. 1027-1003, 2007.
[20] K. Egashira, K. Mizutani, T. Nagao, “Ultrasonic vibration drilling of microholes in glass,” CIRP Annals-Manufacturing Technology, Vol. 51, pp. 339-342, 2002.
[21] S. S. F. Chang, G. M. Bone, “Burr size reduction in drilling by ultrasonic assistance,” Robotics and Computer-Integrated Manufacturing, Vol. 21, pp. 442–450, 2005.
[22] H. C. Mult. G. Spur Dipl, S. E. Holl, “Ultrasonic assisted grinding of ceramics,” Journal of Materials Processing Technology, Vol. 62, pp. 287-293, 1996.
[23] M. Nomura, Y. Wu, T. Kuriyagawa, T. Kawashima, T. Shibata, “Effects of grain size and concentration of grinding wheel in ultrasonically assisted grinding,” Key Engineering Materials, Vol. 389-390, pp 283-288, 2009.
[24] H. Isobe, K. Hara, A. Kyusojin, M. Okada, H. Yoshihara, “Ultrasonically assisted grinding for mirror surface finishing of dies with electroplated diamond tools,” International Journal of Precisiom Engineering And Manufacturing, Vol. 8, pp. 38-43, 2007.
[25] K. Hara, H. Isobe, A. Kyusojin, “Optimization of cutting edge truncation depth for ultrasonically assisted grinding to finish mirror surface,” Advanced Materials Research, Vol. 76-78, pp 88-93, 2009.
[26] K. Hara, H. Isobe, A. Kyusojin, “Effects of cutting edge truncation on ultrasonically assisted grinding,” Key Engineering Materials, Vol. 389-390, pp. 368-374, 2009.
[27] 中國砂輪企業股份有限公司, 內徑研磨用鑽石及氮化硼磨棒型錄, 第一頁, 2008。
[28] J. D. Kim, I. H. Choi, “Micro surface phenomenon of ductile cutting in the ultrasonic vibration cutting of optical plastics,” Journal of Materials Processing Technology, Vol. 68, pp. 89–98, 1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.221.174.248
論文開放下載的時間是 校外不公開

Your IP address is 18.221.174.248
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code