Responsive image
博碩士論文 etd-0907111-025211 詳細資訊
Title page for etd-0907111-025211
論文名稱
Title
銅觸媒催化含硼奈米碳管的生長
Synthesis of Boron-Containing Carbon Nanotubes Catalyzed by Cu/γ- Al2O3
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-08-11
繳交日期
Date of Submission
2011-09-07
關鍵字
Keywords
銅觸媒、化學氣相沉積法、奈米碳管、含硼
chemical vapor deposition, copper catalyst, carbon nanotube, boron-doped
統計
Statistics
本論文已被瀏覽 5656 次,被下載 727
The thesis/dissertation has been browsed 5656 times, has been downloaded 727 times.
中文摘要
含硼奈米碳管(Boron doped carbon nanotube, B-CNTs)為新穎之奈米材料,其結構相似於碳管,同樣有著優異的機械性能,且具有更高的高溫抗氧化能力。不同於奈米碳管由於複雜的手性問題導致的性質不可控性,含硼奈米碳管的電子結構主要依賴於它的化學組成,與其幾何手性無關,在理論計算中顯示,其能隙之大小主要決定於其原子化學組成,藉由合成硼碳奈米管時在製程參數的調控下,改變其原子組成比例,可調變硼碳奈米管之能隙。對於應用發展於光電元件亦或是場效電晶體等奈米電子元件之製作極具潛力。在目前有關於含硼奈米碳管的研究中,所使用的觸媒皆以溶碳度較高的金屬為主,常見的有鐵、鈷、鎳或是這些金屬的合金,尚無文獻提到是否可利用低溶碳度的觸媒成長含硼奈米碳管,如金、銀、銅等金屬。
本文以銅觸媒Cu/γ-Al2O3作為催化劑,B(OCH3)3為反應源氣體,採用化學氣相沉積法(Chemical Vapor Deposition method)合成含硼奈米碳管(B-doped CNTs)。所得的含硼奈米碳管為多壁奈米碳管(Multiwall Carbon Nanotube, MWCNT),具有中空竹節狀、封閉的結構。此外藉由一系列不同反應溫度/載氣流速/前驅物濃度實驗過程中,尋找合成含硼奈米碳管之最佳成長條件,並藉助拉曼光譜儀(Raman),掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)等儀器討論各變因下產物的形貌、結構、生長量、含硼量之差異。
Abstract
Boron-doped carbon nanotubes are predicted to behave as semiconductors over a large range of diameters and chiralities and might thus constitute a suitable class of material for nanoelectronics technology. Boron-doped CNTs were reported as by-products when BC2N nanotubes were prepared by an arc-discharge method. The potential doping of CNTs with different kinds of atoms might provide a mechanism for controlling their electronic properties. We have synthesized boron-doped carbon nanotubes (CNTs) directly on copper catalyst by decomposition of B(OCH3)3 in chemical vapor deposition method. The results were characterized and analyzed by scanning electron microscopy (SEM), Raman, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), solid-state NMR and TGA.
目次 Table of Contents
目錄
論文審定書.......................................................................................................................I
謝誌..................................................................................................................................II
中文摘要.........................................................................................................................III
英文摘要.........................................................................................................................IV
目錄 ................................................................................................................................V
圖目錄..........................................................................................................................VIII
表目錄.............................................................................................................................XI

第一章 緒論.....................................................................................................................1
1-1. 前言..............................................................................................................1
1-2. 研究動機......................................................................................................2
1-3. 實驗目的......................................................................................................3
第二章 文獻回顧...........................................................................................................6
2-1 奈米碳管的結構與電子性質..........................................................................6
2-1-1單壁奈米碳管之結構與電性....................................................................7
2-1-2多壁奈米碳管之結構與電性..................................................................10
2-2奈米碳管氣相成長機制..................................................................................11
2-2-1 頂部與底部成長模式.............................................................................11
2-2-2碳原子擴散路徑......................................................................................12
2-2-3擴散驅動力..............................................................................................13
2-3製造奈米碳管主要的幾種製程.....................................................................13
2-3-1電弧放電法(Arc-discharge method)........................................................13
2-3-2雷射剝除法(Laser ablation).....................................................................14
2-3-3化學氣相沉積法(Chemical vapor deposition)........................................14
2-4含硼奈米碳管簡介.........................................................................................16
2-4-1含硼奈米碳管的發現..............................................................................16
2-4-2含硼奈米碳管的特性..............................................................................17
2-4-3含硼奈米管的製備方法..........................................................................17
2-4-4含硼奈米碳管的應用..............................................................................18
2-5銅觸媒生長奈米碳管的相關文獻 ...................................................................21
第三章 實驗方法...........................................................................................................26
3-1實驗樣品...........................................................................................................26
3-1-1實驗用氣體................................................................................................26
3-1-2實驗用藥品................................................................................................26
3-2實驗步驟...........................................................................................................26
3-3實驗裝置...........................................................................................................28
3-4分析方法...........................................................................................................29
3-4-1掃描式電子顯微鏡 (Scanning Electron Microscope,SEM)..................29
3-4-2穿透式電子顯微鏡 (Transmission Electron Microscope,TEM)...........29
3-4-3拉曼光譜儀 (Raman Spectrometer) .........................................................29
3-4-4熱重分析儀 (Thermogravimetric Analyzer,TGA).................................29
3-4-5射線光電子能譜儀(X-ray photoelectron spectrometer,XPS)................30
3-4-6高磁場固態核磁共振儀500MHz (Solid state Nuclear Magnetic
Resonance,S-NMR)................................................................................30
第四章 結果與討論.....................................................................................................31
4-1含硼前驅物的選擇.............................................................................................31
4-2反應溫度對於成長含硼奈米碳管的影響.........................................................32
4-2-1掃描式電子顯微鏡下之形貌觀察..............................................................32
4-2-2穿透式電子顯微鏡下之形貌觀察..............................................................32
4-2-3熱重損失分析..............................................................................................36
4-2-4 XPS分析......................................................................................................40
4-2-5固態NMR分析...........................................................................................41
4-2-6拉曼光譜分析..............................................................................................42
4-3前驅物濃度對於成長含硼奈米碳管的影響.....................................................44
4-3-1掃描式電子顯微鏡觀察..............................................................................44
4-3-2熱重損失分析..............................................................................................48
4-3-3拉曼光譜分析..............................................................................................51
4-3-4固態NMR分析...........................................................................................52
4-4載氣流速對於成長含硼奈米碳管的影響.........................................................54
4-4-1掃描式電子顯微鏡下之形貌觀察..............................................................54
4-4-2熱重損失分析..............................................................................................56
4-4-3拉曼光譜分析..............................................................................................60
4-4-4固態核磁共振儀分析..................................................................................60
4-5載氣類型對成長含硼奈米碳管的影響..............................................................64
第五章 結論....................................................................................................................69
參考資料..........................................................................................................................70
參考文獻 References
1. Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E., C-60 - Buckminsterfullerene. Nature 1985, 318 (6042), 162-163.
2. Iijima, S., Helical Microtubules of Graphitic Carbon. Nature 1991, 354 (6348), 56-58.
3. Bethune, D. S.; Kiang, C. H.; Devries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R., Cobalt-Catalyzed Growth of Carbon Nanotubes with Single-Atomic-Layerwalls. Nature 1993, 363 (6430), 605-607.
4. Iijima, S.; Ichihashi, T., Single-Shell Carbon Nanotubes of 1-Nm Diameter (Vol 363, Pg 603, 1993). Nature 1993, 364 (6439), 737-737.
5. Hone, J.; Whitney, M.; Piskoti, C.; Zettl, A., Thermal conductivity of single-walled carbon nanotubes. Phys Rev B 1999, 59 (4), R2514-R2516.
6. Prylutskyy, Y. I.; Durov, S. S.; Ogloblya, O. V.; Buzaneva, E. V.; Scharff, P., Molecular dynamics simulation of mechanical, vibrational and electronic properties of carbon nanotubes. Comp Mater Sci 2000, 17 (2-4), 352-355.
7. Journet, C.; Maser, W. K.; Bernier, P.; Loiseau, A.; delaChapelle, M. L.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J. E., Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997, 388 (6644), 756-758.
8. Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E., Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization. Chem Phys Lett 1995, 243 (1-2), 49-54.
9. Kong, J.; Cassell, A. M.; Dai, H. J., Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett 1998, 292 (4-6), 567-574.
10. Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J., Storage of hydrogen in single-walled carbon nanotubes. Nature 1997, 386 (6623), 377-379.
11. Dai, H. J.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E., Nanotubes as nanoprobes in scanning probe microscopy. Nature 1996, 384 (6605), 147-150.
12. Jarrn-Horng Lin, C.-S. C., Hui-Ling Ma ,; Chen-Yin Hsu , H.-W. C., Synthesis of MWCNTs on CuSO4/Al2O3 using chemical vapor deposition from methane. Carbon 2007, 45.
13. Ebbesen, T. W., Carbon nanotubes:preparation and properties. CRC press 1997.
14. K. Tanigaki, S. K., and T. W. Ebbesen, Thin Solid Films 1995, 257.
15. Yakobson, B. I.; Smalley, R. E., Fullerene nanotubes: C-1000000 and beyond. Am Sci 1997, 85 (4), 324-337.
16. Ebbesen, T. W., Carbon nanotubes: preparation and properties, (CRC Press, 1996).
17. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R., Physics of Carbon Nanotubes. Carbon 1995, 33 (7), 883-891.
18. M. S. Dresselhaus, G. Dresselhaus, amd P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, 1996.
19. Dai, H., Surf Sci 2002, 500.
20. (a) Zhou O, F. R., Murphy DW, Chen CH, Haddon RC, Ramirez AP, Glarum SH, Defects in carbon nanostructures. Sci China Ser B 1994, 263 (5154); (b) S. Amelinckx, D. b., X. B. Zhang, G. Van Tendeloo. J. Van Landuyt. , Science 1995, 267.
21. (a) Dai, H. J.; Wong, E. W.; Lieber, C. M., Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes. Science 1996, 272 (5261), 523-526; (b) Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.; Thio, T., Electrical conductivity of individual carbon nanotubes. Nature 1996, 382 (6586), 54-56.
22. Sinnott, S. B.; Andrews, R.; Qian, D.; Rao, A. M.; Mao, Z.; Dickey, E. C.; Derbyshire, F., Model of carbon nanotube growth through chemical vapor deposition. Chem Phys Lett 1999, 315 (1-2), 25-30.
23. Meyyappan, M., Carbon nanotubes: science and application, CRC PRESS, New York 2005 pp.4-5 and p.111.
24. Baker, R. T. K.; Harris, P. S.; Thomas, R. B.; Waite, R. J., Formation of Filamentous Carbon from Iron, Cobalt and Chromium Catalyzed Decomposition of Acetylene. J Catal 1973, 30 (1), 86-95.
25. A. Oberlin, M. E., and T.Koyama, High resolutioin electron microscopy of graphizable carbon fiber prepared by benzene decomposition. Jap. J. Appl. Phys. 1997, 16.
26. Yang, R. T.; Yang, K. L., Evidence for Temperature-Driven Carbon Diffusion Mechanism of Coke Deposition on Catalysts. J Catal 1985, 93 (1), 182-185.
27. Nielsen, J. R.; Trimm, D. L., Mechanisms of Carbon Formation on Nickel-Containing Catalysts. J Catal 1977, 48 (1-3), 155-165.
28. Stephan, O.; Ajayan, P. M.; Colliex, C.; Redlich, P.; Lambert, J. M.; Bernier, P.; Lefin, P., Doping Graphitic and Carbon Nanotube Structures with Boron and Nitrogen. Science 1994, 266 (5191), 1683-1685.
29. Wengsieh, Z.; Cherrey, K.; Chopra, N. G.; Blase, X.; Miyamoto, Y.; Rubio, A.; Cohen, M. L.; Louie, S. G.; Zettl, A.; Gronsky, R., Synthesis of Bxcynz Nanotubules. Phys Rev B 1995, 51 (16), 11229-11232.
30. Han, W.; Bando, Y.; Kurashima, K.; Sato, T., Boron-doped carbon nanotubes prepared through a sibstitution reaction. Chemical Physics Letters 1999, 299, 368-373.
31. (a) Velamakanni, A.; Ganesh, K. J.; Zhu, Y. W.; Ferreira, P. J.; Ruoff, R. S., Catalyst-Free Synthesis and Characterization of Metastable Boron Carbide Nanowires. Adv Funct Mater 2009, 19 (24), 3926-3933; (b) Wang, Z.; Jia, D.; Liu, S.; Zhang, M., Direct growth of carbon nanotube junctions by switching source gases in a continuous chemical vapor deposition. materials letters 2008, 62, 3288-3290.
32. Strydom, A. M.; Mondal, K. C.; Erasmus, R. M.; Keartland, J. M.; Coville, N. J., Physical properties of CVD boron-doped multiwalled carbon nanotubes. Mater Chem Phys 2008, 111 (2-3), 386-390.
33. (a) Srivastava, P.; Handuja, S.; Vankar, V. D., Structural Modification in Carbon Nanotubes by Boron Incorporation. Nanoscale Res Lett 2009, 4 (8), 789-793; (b) Ishii, S.; Watanabe, T.; Ueda, S.; Tsuda, S.; Yamaguchi, T.; Takano, Y., Resistivity reduction of boron-doped multiwalled carbon nanotubes synthesized from a methanol solution containing boric acid. Applied Physics Letters 2008, 92, 202116.
34. Ayala, P.; Plank, W.; Gruneis, A.; Kauppinen, E. I.; Rummeli, M. H.; Kuzmany, H.; Pichler, T., A one step approch to B-doped single-walled carbon nanotubes. J. Mater. Chem 2008, 18, 5676-5681.
35. Chen, C. F.; Tsai, C. L.; Lin, C. L., The characterization of boron-doped carbon nanotube arrays. Diam Relat Mater 2003, 12 (9), 1500-1504.
36. Ishii, S.; Watanabe, T.; Ueda, S.; Tsuda, S.; Yamaguchi, T.; Takano, Y., Resistivity reduction of boron-doped multiwalled carbon nanotubes synthesized from a methanol solution containing boric acid. Appl. Phys. Lett. 2008, 92 (20).
37. Murata, N.; Haruyama, J.; Reppert, J.; Rao, A. M.; Koretsune, T.; Saito, S.; Matsudaira, M.; Yagi, Y., Superconductivity in thin films of boron-doped carbon nanotubes. Phys. Rev. Lett. 2008, 101 (2).
38. Viswanathan, B.; Sankaran, M., Nitrogen-containing carbon nanotubes as a possible hydrogen storage medium. Indian J Chem A 2008, 47 (6), 808-814.
39. Viswanathan, B.; Sankaran, M., Hydrogen storage in boron substituted carbon nanotubes. Carbon 2007, 45 (8), 1628-1635.
40. Saini, V.; Li, Z. R.; Bourdo, S.; Kunets, V. P.; Trigwell, S.; Couraud, A.; Rioux, J.; Boyer, C.; Nteziyaremye, V.; Dervishi, E.; Biris, A. R.; Salamo, G. J.; Viswanathan, T.; Biris, A. S., Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions. J Appl Phys 2011, 109 (1).
41. T. Baird, J. R. F., and B. Grant, Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at 700℃” Carbon. Carbon 1972, 12, 591.
42. (a) Colomer, J. F.; Stephan, C.; Lefrant, S.; Van Tendeloo, G.; Willems, I.; Konya, Z.; Fonseca, A.; Laurent, C.; Nagy, J. B., Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chem Phys Lett 2000, 317 (1-2), 83-89; (b) Seidel, R.; Duesberg, G. S.; Unger, E.; Graham, A. P.; Liebau, M.; Kreupl, F., Chemical vapor deposition growth of single-walled carbon nanotubes at 600 degrees C and a simple growth model. J Phys Chem B 2004, 108 (6), 1888-1893.
43. A. A. Setlur, J. M. L., J. Y. Dai, and R. P. H. Chang A method for synthesizing large quantities of carbon nanotubes and encapsulated copper nanowires Appl. Phys. Lett. 1996, 69.
44. (a) Rodriguez, N. M., A Review of Catalytically Grown Carbon Nanofibers. J Mater Res 1993, 8 (12), 3233-3250; (b) Chambers, A.; Rodriguez, N. M.; Baker, R. T. K., Influence of copper on the structural characteristics of carbon nanofibers produced from the cobalt-catalyzed decomposition of ethylene. J Mater Res 1996, 11 (2), 430-438.
45. Zhang, G. Y.; Wang, E. G., Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation. Appl Phys Lett 2003, 82 (12), 1926-1928.
46. C Deck, K. V., Prediction of carbon nanotube growth success by the analysis of carbon–catalyst binary phase diagrams. Carbon 2006, 44, 267.
47. X. Y. Tao , X. B. Z., J. P. Cheng , Z. Q. Luo , S. M. Zhou and F. Liu Thermal CVD synthesis of carbon nanotubes filled with single-crystalline Cu nanoneedles at tips. Diamond Related Mater 2006, 15.
48. Yang, T. S.; Chang, T. H.; Yeh, C. T., Influence of precursors on the sulfated alumina superacid: Support and impregnating solution effect. J Mol Catal a-Chem 1997, 123 (2-3), 163-169.
49. Olah, G. A., 100 years of carbocations and their significance in chemistry. J Org Chem 2001, 66 (18), 5943-5957.
50. Karra, M.; Thrower, P. A.; Radovic, L. R., The role of substitutional boron in carbon oxidation: Inhibitor and catalyst! Abstr Pap Am Chem S 1996, 211, 56-Fuel.
51. Ayala, P.; Plank, W.; Gruneis, A.; Kauppinen, E. I.; Rummeli, M. H.; Kuzmany, H.; Pichler, T., A one step approach to B-doped single-walled carbon nanotubes. J Mater Chem 2008, 18 (46), 5676-5681.
52. (a) Mukuda, H.; Tsuchida, T.; Harada, A.; Kitaoka, Y.; Takenouchi, T.; Takano, Y.; Nagao, M.; Sakaguchi, I.; Kawarada, H., B-11-NMR study in boron-doped diamond films. Sci Technol Adv Mat 2006, 7, S37-S40; (b) Murakami, M.; Shimizu, T.; Tansho, M.; Takano, Y., (11)B nuclear magnetic resonance in boron-doped diamond. Sci Technol Adv Mat 2008, 9 (4).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code