Responsive image
博碩士論文 etd-0907111-100334 詳細資訊
Title page for etd-0907111-100334
論文名稱
Title
分子束磊晶成長砷化鎵銦量子點
InGaAs Quantum Dots grown by Molecular Beam Epitaxy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
158
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-27
繳交日期
Date of Submission
2011-09-07
關鍵字
Keywords
太陽能電池、超輻射發光二極體、分子束磊晶、寬波段、雷射、量子點
laser, super luminescence diode, solar cell, broadband, molecular beam epitaxy, quantum dot
統計
Statistics
本論文已被瀏覽 5682 次,被下載 190
The thesis/dissertation has been browsed 5682 times, has been downloaded 190 times.
中文摘要
本論文主題乃以砷化鎵銦量子點為核心技術,藉由探討量子點成長條件參數及物理機制來最佳化量子點,設計雷射/半導體光放大器、寬波段量子點結構、兆赫波光源耦合共振腔結構,成長材料進而完成元件製作。此量子點結構乃透過晶格常數差異所導致的應力差為其形成機制,配合應力緩衝層使銦含量擴散程度差異來調製不同發光波長。在實驗上,以固態分子束磊晶系統成長高品質砷化鎵銦量子點技術,並利用雙晶X光繞射儀、穿透式電子顯微鏡、光激螢光光譜、電致螢光光譜量測技術來進一步檢測晶片特性。
針對波長為1.3微米量子點晶片,使用濕蝕刻技術完成Fabry-Perot(FP)脊狀波導雷射的製備。電流對光輸出特性曲線顯示,當到達臨界電流時,量子點之第二能階至第二電洞能階的光增益(e2-hh2,波長為1160奈米)大於第一能階至第一電洞能階的光增益(e1-hh1,波長為1220奈米)。FP-Laser的腔長為0.6微米時,雷射光波長為1160奈米,隨著腔長逐漸增加至2微米時,雷射光波長紅移至1220奈米接近基態發光,此一發光能階轉移在含有量子井之量子點雷射結構中特別明顯。而隨著注入電流的增加,觀察到兩同時存在的雷射發光波長,分別為1160、1175nm,此一獨特的雷射特性與不互相同的兩量子點分布的載子侷限有關。
為了研究1.3微米波長光源的應用開發,我們將量子點成長最佳化來因應各種應用所需光源特性,以應用於光學相干斷層掃描光源、串接式太陽能電池、兆赫波光源等領域。超輻射發光二極體光源部分,我們分別設計多層堆疊非對稱量子點結構、量子點綴於井結構、P型摻雜量子點綴於井等結構,分別以簡易mesa-diode透過電致螢光光譜觀察其載子覆合情況及其半高寬影響。比較五種不同結構,其中P型摻雜量子點綴於井由於其量子井增加載子捕捉能力及P型摻雜提供價帶充足電洞,而使發光強度變強而達到最大198奈米之半高寬。因此,此結構將提供一絕佳的超輻射發光二極體光源來取代現有方案。針對串接式太陽能電池部分,我們以不同波長之量子點形成光子吸收能量範圍為1電子伏特結構後,以砷化鎵銦量子井來減緩量子點本身應力來舒緩因應力所造成的開路電壓下降,並透過P型摻雜增加內建電場強度來增加光電流進而達到較高的效率。在兆赫波光源應用部分,將雙耦合共振腔結構並植入量子點於其共振腔,並且以穿透光譜、側邊入射光激螢光光譜來分析其性質。成功藉由改變中間帶布拉格反射層對數(6.5對)調變耦合共振腔模態,得到位於1180及1206奈米之雙光激螢光訊號,此雙光源訊號之差頻坐落於5.5兆赫波段。
我們亦在磷化銦基板上成長量子點結構來觀察結構特性,由於砷化鎵銦與磷化銦晶格常數相差較小,量子點磊晶技術將更具挑戰。透過觀察表面形貌、應力分析、及光學特性來探討發現影響磷化銦基板之奈米結構,在緩衝層及奈米結構中的三族元素皆扮演決定其奈米結構形貌的重要因素。量子線的產生原因係由於鎵原子出現後表面吸附原子的擴散長度增加所導致。最後進一步建立量子點、量子線對應資料庫,進而在爾後的元件設計上提供新穎結構可供選擇。
Abstract
In this thesis, we have reported the MBE growth, design, and fabrication of the InGaAs quantum dots (QDs) laser/semiconductor optical amplifier, broadband QDs structure, coupled double cavity structure for terahertz emission on GaAs substrate. The emission wavelengths of the strain-induced S-K growth mode QDs structures are adjusted through the composition of QDs and strain-compensated capping layer. Also, the technique of growing high quality InGaAs QDs with solid source molecular beam epitaxy has been established and characterized by double crystal X-ray diffraction, transmission electron microscopy, photoluminescence, electroluminescence measurements.
For 1.3μm QDs laser samples, ridge waveguide lasers of the Fabry-Perot (FP) type are fabricated by wet-etching process. From the QDs laser L-I curve, the e2-hh2 transition at λ =1160nm have larger optical gain than e1-hh1 transition at λ =1220nm. The FP laser with 0.6μm cavity length shows a lasing peak of 1160nm at threshold. As the cavity length increase to 2μm, the lasing peak red shift to 1220nm (closed to ground state emission wavelength). This energy band gap transition phenomenon is obvious especially in the QDs laser with quantum well (QW) structure. When the injection current increase, two lasing peaks at λ= 1160 and 1175nm are observed sequentially. This unique lasing behavior is shown to be consistent with carriers localized in noninteracting dots.
For the application of 1.3μm light source, we optimum the growth condition for different needs in optical coherent tomography (OCT) light source, tandem solar cell, terahertz emission light source, etc. For the super luminescence diode (SLED) in OCT, we design multi-stacked asymmetric QDs structure (AMQD), QDs in the well structure (DWell), Dwell with p-doping in well structure to investigate the carrier recombination condition and bandwidth. Comparing with 5 structures in this study, the Dwell with p-doping in well structure has a maximum EL bandwidth exceed 198nm. The large bandwidth is attributed to the QW which increases the carrier capture rate and the p-doping which provide the efficient holes in valance band. This structure provides an excellent SLED light source solution to replace the existing program. For the tandem solar cell, we use the multi-stack QDs to compose broadband absorption in 1eV range. In order to avoid the degradation in the open circuit voltage, we use InGaAs QW to reduce the QDs strain. We observed the doping effect on the built in field through the photo-reflectance measurements. For the better photocurrent collection, we use p-doping in the QW to increase the built-in field intensity to obtain higher efficiency. For the terahertz emission, the QDs embedded in coupled double-cavity structures with an AlAs/GaAs intermediate distributed Bragg reflector (DBR) are grown on GaAs substrates. Two emission peaks at 1180, 1206 nm from the QDs corresponding to the coupled double-cavity resonant modes are observed in the high reflection band. The frequency differences for the two resonant coupled modes are of 5.5 terahertz, and have been successfully controlled by changing the pair numbers for the intermediate DBR.
In addition, we have grown the InGa(Al)As nanostructures on InP substrate. The lattice constant difference between InGaAs and InP is relatively smaller compare with GaAs substrate, and it will be more challenge in epitaxial growth. After we investigate the strain, surface morphologies, optical properties for the nanostructures, we find the group III elements play an important role in the morphologies. Wire formation is attributed by the enhanced adatom diffusion length in the stepped surface front along [0-11] direction for the presence of Ga both in the nanostructure and buffer layer. Finally, we established QDs, Qwires database for the valuable new possibilities for designing new and original structures.
目次 Table of Contents
Chapter 1 Introduction………………………………………………………1
1.1 Evolution of active layer………………………………………………2
1.2 Benefit of QDs structure………………………………………………2
1.3 Unique problems in QDs…………………………………………………3
1.4 Outline of this thesis…………………………………………………4
Reference…………………………………………………………………………6

Chapter 2 MBE growth for InGaAs QDs………………………………………7
2.1 Molecular beam epitaxy (MBE)……………………………………………7
2.2 Calibration of the cell flux and growth rate………………………8
2.2.1 RHEED intensity oscillation…………………………………………8
2.2.2 Flux measurement………………………………………………………11
2.2.3 Stranski-Krastanov (SK) mode………………………………………14
2.3 QDs growth parameters……………………………………………………18
2.3.1 QDs growth rate………………………………………………………18
2.3.2 Substrate temperature………………………………………………18
2.3.3 Critical thickness………………………………………………….22
2.3.4 Capping layer…………………………………………………………25
2.4 Experimental results and discussions………………………………31
Reference………………………………………………………………………34

Chpater 3 InGaAs QDs Laser/SOA’s structure…………………………36
3.1 Design of p-i-n laser/SOA’s structure…………………………36
3.1.1 Strain field in active layer……………………………………36
3.1.2 p-i-n Laser/SOA’s structure simulation………………………40
3.2 Mesa diode…………………………………………………………………46
3.3 Ridge waveguide Laser…………………………………………………48
3.3.1 Ridge waveguide fabrication………………………………………48
3.4 Devices, experimental results and discussions…………………51
Reference………………………………………………………………………59

Chapter 4 Broad band InGaAs QDs SLED/ solar cell structure…………60
4.1 Multi-stack broad band structure………………………………………60
4.1.1 Single layer InGaAs QDs………………………………………………60
4.1.2 Multi-stack QDs structure……………………………………………64
4.1.3 QDs in a well (DWELL) structure……………………………………69
4.2 Super Luminescent Diodes (SLED)………………………………………74
4.2.1 Challenge for OCT broadband light source………………………74
4.2.2 SLED R&D opportunity…………………………………………………74
4.2.3 EL spectrum FWHM…………………………………………………………75
4.3 QDs Solar cell………………………………………………………………76
4.3.1 Solar cell model…………………………………………………………77
4.3.2 III-V semiconductor solar cell………………………………………81
4.3.3 Photovoltaic response in QDs structure……………………………81
4.3.4 Multi-stack broadband QDs solar cell………………………………82
Reference……………………………………………………………………87

Chapter 5 Quantum Dots DBR-coupled Double cavity structure……………88
5.1 Distributed Bragg Reflector (DBR)………………………………………89
5.1.1 DBR theory……………………………………………………………………89
5.2 Double cavity DBR……………………………………………………………92
5.2.1 Simulation method…………………………………………………………92
5.2.2 MBE growth of double cavity structure………………………………93
5.3 Experimental results and discussions……………………………………97
Reference……………………………………………………………………………103

Chapter 6 InGaAs QDs and wires on InP substrate…………………………105
6.1 Ternary/Quaternary composition to InP…………………………………106
6.1.1 Ternary/Quaternary on InP………………………………………………106
6.1.2 X-ray diffraction analysis……………………………………………107
6.2 InGaAs/InAlAs QDs/wires on InP…………………………………………109
6.2.1 Critical thickness of InGaAs QDs/Wires……………………………109
6.2.2 InGaAs QDs and wires on InP grown by MBE…………………………110
6.3 Strained induced InGaAs/InAlAs QDs/wires……………………………112
6.3.1 Surface morphology and PL results………………………………… 112
6.3.2 Polarized PL result………………………………………………………115
6.3.3 QDs/Qwire intermixing……………………………………………………120
Reference……………………………………………………………………………125

Chapter 7 Summary…………………………………………………………………127
APPENDICES
A. Riber Compact 21T MBE system………………………………………………131
Publication list…………………………………………………………………142
參考文獻 References
[1] Y. Arakawa and H. Sakaki, "InGaAs quantum dots embedded in DBR-coupled double cavity " Appl. Phys. Lett 40, 939 (1982).
[2] D.I. Lubyshev, P.P. Gonza′ lez-Borrero, E. Marega Jr., E. Petitprez, N.La Scala Jr. and P. Basmaji, "Exciton localization and temperature stability in self‐organized InAs quantum dots," Appl. Phys. Lett. 68 (2), 205 (1996).
[3] F. Heinrichsdorff, Ch. Ribbat, M. Grundmann and D. Bimberg, "High-power quantum-dot lasers at 1100 nm," Appl. Phys. Lett. 76, 556 (2000).
[4] O.B. Shchekin and D.G. Deppe, "1.3 μm InAs quantum dot laser with To = 161K from 0 to 80°C," Appl. Phys. Lett 80, 3277 (2002).
[5] Y K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama and H. Ishikawa, "1.3-μm CW lasing characteristics of self-assembled InGaAs-GaAs quantum dots," IEEE J. Quantum Electron 36, 472 (2000).
[6] K.Y. Chuang, C.Y. Chen, T.E. Tzeng, J.Y. Feng, T.S. Lay, "Optical polarization in vertically coupled InGaAs quantum dots of p-type modulation doping," Physica VERTICALLY 40, 1182 (2008).
[7] A. Martí, N. López, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, L. Cuadra and A. Luque, "Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell " Thin Soild Films 511-512, 638 (2006).
[8] J. Y. Marzin, J. M. Gérard, A. Israël, D. Barrier, and G. Bastard, "Photoluminescence of single InAs quantum dots obtained by self-orgainzed growth on GaAs," Phys. Rev. Lett. 73, 716 (1994).
[9] P. Pinsukanjana, A. Jackson, J. Tofte, K. Maranowski, S. Campbell, J. English, S. Chalmers, L Coldren, and Gossard, "Real?time simultaneous optical?based flux monitoring of Al, Ga, and In using atomic absorption for molecular beam epitaxy," J. Vac. Sci. Technol. B (1996).
[10] W. Gilmore III and D. E. Aspnes, "Performance capabilities of reflectometers and ellipsometers for compositional analysis during AlxGa1?xAs epitaxy " Appl. Phys. Lett 66, 1617-1619 (1995).
[11] C. H. Kuo, M. Boonzaayer, M. DeHerrera, T. Kyong, Y.-H. Zhang, B. Johs, and J. S. Hale, "Real time in situ composition control of InGaAs lattice matched to InP by an 88-wavelength ellipsometer," J. Vac. Sci. Technol. B 16 (3), 1484-1488 (1998).
[12] J.J. Harris, B.A. Joyce and P.J. Dobson, "Oscillations in the surface structure of Sn-doped GaAs during growth by MBE " Surface Science Letters 103, 90-96 (1981).
[13] Shiang-Feng Tang, Shih-Yen Lin, and Si-Chen Lee, "Surface morphology and photoluminescence for InAs quantum dots of different growth temperature and capping layer," J. Appl. Phys 69, 6461 (1911).
[14] B. W. Wessels, "Morphological stability of strained-layer semiconductors," J. Vac. Sci. Technol. B 15, 1056-1058 (1997).
[15] Robert M. Kolbas, Neal G. Anderson, W.D. Laidig, Y.C. Lo, K.Y. Hsieh, and Y.J. Yang, "Strained-Layer InGaAs-GaAs- AlGaAs Photopumped and Current Injection Lasers," IEEE Journal of Quantum Electronics 24, 8 (1988).
[16] Hideaki Saito, Kenichi Nishi, and Shigeo Sugou, "Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5 mm emission," Applied Phtsics Letters 73, 2742-2744 (1998).
[17] Kenichi Nishi, Hideaki Saito, and Shigeo Sugou, "A narrow photoluminescence linewidth of 21 meV at 1.35um from strainreduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates," Appl. Phys. Lett 74, 1111-1113
[18] F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, "Strain engineering of self-organized InAs quantum dots," PHYSICAL REVIEW B, 64 (085305) (2001).
[19] H. Y. Liua, X. D. Wang, J. Wu, B. Xu, Y. Q. Wei, W. H. Jiang, D. Ding, X. L. Ye, F. Lin, J. F. Zhang, J. B. Liang, and Z. G. Wang, "Structural and optical properties of self-assembled InAs/GaAs quantum dots covered by InxGa1-xAs," Appl. Phys. Lett 88, 3392-3395 (2000).
[20] O. Schumann, S. Birner, M. Baudach, L. Geelhaar,1, H. Eisele, L. Ivanova,R. Timm, A. Lenz, S. K. Becker, M. Povolotskyi, M. Dahne, G. Abstreiter, and H. Riechert, "Effects of strain and confinement on the emission wavelength of InAs quantum dots due to a GaAs1?xNx capping layer," Phys. Rev. B 71, 245316 (2005).
[21] G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, "Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs," Phys. Rev. Lett., 76, p. 952, 1996.
[22] H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, "Improved performance of 1.3 mm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer," Appl. Phys. Lett, 85, pp. 704-706, 2004.
[23] H. Y. Liua, I. R. Sellers, M. Gutierrez, K. M. Groom, W. M. Soong, M. Hopkinson, and J. P. R. David, R. Beanland, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, "Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures," J. Appl. Phys, 96, pp. 1988-1992, 2004.
[24] C. W. Yen, "InGaAs quantum dots laser by varying the composition of cladding layer," Master thesis, Inst. of Electro-optical Engineering, NSYSU, 2010.
[25] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, Y. Yazawa, "A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance," Jpn. J. Appl. Phys., 35, 1996.
[26] W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, "Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight " Appl. Phys. Lett., 94, 2009.
[27] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, Y. Yazawa, "GaInNAs: A novel material for long-wavelength-range laser diodes with excellent high-temperature performance," Jpn. J. Appl. Phys., 35, pp. 1273–1275, 1996.
[28] D. Jackel, A. Ptak, S. Bank, H. Yuen, M. Wistey, D. Friedman, S. Kurtz, and J.S. Harris,"GaInNAsSb solar cells grown by molecular beam epitaxy," Waikoloa, HI, USA, May 2006, pp. 783–786, 2006.
[29] D.B. Jackrel, S.R. Bank, H.B. Yuen, M.A. Wistey, and J.S. Harris, "Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy," J. Appl. Phys., 101, 2007.
[30] M.W. Wanlass, S.P. Ahrenkiel, R.K. Ahrenkiel, D.S. Albin, J.J. Carapella, A. Duda, J.F. Geisz, S. Kurtz, T. Moriarty, R.J. Wehrer, and B. Wernsman, "Lattice-mismatched approaches for high-performance, III-V photovoltaic energy converters.," In Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA, January, pp. 530-535, 2005.
[31] M.W. Wanlass, S.P. Ahrenkiel, D.S. Albin, J.J. Carapella, A. Duda, K. Emery, J.F. Geisz, K. Jones, S. Kurtz, T. Moriarty, and M.J. Romero, "M.J. GaInP/GaAs/GaInAs monolithic tandem cells for high-performance solar concentrators," In Proceedings of the International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, Scottsdale, AZ, USA, 2005.
[32] R. Pirsiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, "Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives," IEEE Antennas and Propagation Magazine, 49, pp. 24-39, 2007.
[33] K. Kawase, Y. Ogawa, Y. watanabe, and H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express, 11, pp. 2549-2554, 2003.
[34] G. Ramian, "The new UCSB free-electron lasers," Nucl. Instrum. Methods Phys. Res. A, 318, pp. 225-229, 1992.
[35] R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature, 417, pp. 156-159, 2002.
[36] T. Kitada, F. Tanaka, T. Takahashi, K. Morita, and T. Isu, "GaAs/AlAs coupled multilayer cavity structures for terahertz emission devices," Appl. Phys. Lett., 95, pp. 111106 - 111106-3 2009.
[37] Y. Arakawa, and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. , 40, pp. 939 - 941 1982.
[38] D. I. Lubyshev, P.P. Gonza’ lez-Borrero, E. Marega, Jr., E. Petitprez, N. La Scala, Jr., and P. Basmaji, "Exciton localization and temperature stability in self?organized InAs quantum dots " Appl. Phys. Lett., 68, 1996.
[39] F. Heinrichsdorff, Ch. Ribbat, M. Grundmann, and D. Bimberg, "High-power quantum-dot lasers at 1100 nm," Appl. Phys. Lett. , 76, pp. 556-558, 2000.
[40] K. Y. Chuang, C.Y. Chen, T. E. Tzeng, J. Y. Feng, and T. S. Lay, "Differential absorption spectroscopy on coupled InGaAs quantum dots," Physica E, 40, pp. 1882-1884, 2008.
[41] K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, "1.3-μm CW lasing characteristics of self-assembled InGaAs-GaAs quantum dots," IEEE J. Quantum Electron., 36, pp. 472-478, 2000.
[42] O. B. Shchekin and D. G. Deppe, "The role of p-type doping and the density of states on the modulation response of quantum dot lasers " Appl. Phys. Lett., 80, pp. 2758-2760, 2002.
[43] W. Heiss, T. Schwarzl, J. Roither, G. Springholz, M. Aigle, H. Pascher, K. Biermann, and K. Reimann,"Epitaxial Bragg mirrors for the mid-infrared and their applications," Progress in Quantum Electronics, 25, pp. 193-228, 2001.
[44] E.Y. Lin, and T.S. Lay, "A band-to-band Coulomb interaction model for refractive index spectra of ternary semiconductors," J. Appl. Phys.,105, pp. 013509 - 013509-8 2009.
[45] Adao Adachi, "GaAs, AlAs, and AlxGa1?xAs: Material parameters for use in research and device applications " J. Appl. Phys. ,58, 1985.
[46] A.F.J. Levi, "Microdisk lasers " Solid State Electronics, 37, pp. 1297-1302 1994.
[47] Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current " Appl. Phys. Lett., 40, 939 (1982).
[48] Bimberg, D.,Kirstaedter, N., Ledentsov, N.N.,Alferov, Zh.I., Kop'ev, P.S., Ustinov, V.M. "InGaAs-GaAs quantum-dot lasers," IEEE J. Sel. Top. Quantum Electron. , 3, 196 (1997).
[49] K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama and H. Ishikawa "1.3-μm CW lasing characteristics of self-assembled InGaAs-GaAs quantum dots," IEEE J. Quantum Electron, 36, 472 (2000).
[50] O.B. Shchekin and D.G. Deppe, Appl. Phys. Lett., 80, 3277 (2002).
[51] J. Brault, M. Gendry, G. Grenet, G. Hollinger, Y. Desieres and T. Benyattou, "Role of buffer surface morphology and alloying effects on the properties of InAs nanostructures grown on InP(001) " Appl. Phys. Lett., 73, 2932 (1998).
[52] J.M. Garcia, L. Gonzalez, M.U. Gonzalez, J.P. Silveria, Y. Gonzalez and F. Briones, "InAs/InP(0 0 1) quantum wire formation due to anisotropic stress relaxation: in situ stress measurements " Journal of Crystal Growth 227-228, 9757 (2001).
[53] R.H. Wang, A. Stintz, P.M. Varangis, T.C. Newell, H. Li, K.J. Malloy and L.F. Lester, "Room-temperature operation of InAs quantum-dash lasers on InP (001) " IEEE Photonics Technol. Lett. , 13, 767 (2001).
[54] R. Schwertberger, D. Gold, J.P. Reithmaier and A. Forchel, "Long-wavelength InP-based quantum-dash lasers," IEEE Photonics Technol. Lett., 14, 735 (2002).
[55] B.W. Wessels, "Morphological stability of strained-layer semiconductors " J. Vac, Sci. Technol. B,15 ,1056 (1997).
[56] S.T. Chou, K.Y. Cheng, L.J. Chou and K.C. Hsieh, "GaxIn1?xAs multiple?quantum?wire lasers grown by the strain?induced lateral?layer ordering process " Appl. Phys. Lett., 66, 2220 (1995).
[57] X.Q. Huang, Y.L. Wang, L. Li, L. Liang and F.Q. Liu, "Realization of highly uniform self-assembled InAs quantum wires by the strain compensating technique," Appl. Phys. Lett., 87, 083108 (2005).
[58] X.L. Wang and V. Voliotis, "Epitaxial growth and optical properties of semiconductor quantum wires " J. Appl. Phys. , 99, 121301 (2006).
[59] P.J. Pearah, A.C. Chen, A.M. Moy, K.C. Hsieh and K.Y. Cheng, "AlGaInP multiple quantum wire heterostructure lasers prepared by the strain-induced lateral-layer ordering process," IEEE J. Quantum Electron., 30, 608 (1994).
[60] S. Francoeur, Y. Zhang, A.G. Norman, F. Alsina, A. Mascarenhas, J.L. Reno, E.D. Jones, S.R. Lee and D.M. Follstaedt, "Optical properties of spontaneous lateral composition modulation in AlAs/InAs short-period superlattices," Appl. Phys. Lett. , 77, 1765 (2000).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code