Responsive image
博碩士論文 etd-0907111-155440 詳細資訊
Title page for etd-0907111-155440
論文名稱
Title
水噴霧液滴熱場/液膜成長過程特性分析
Characterization of Water Spray Temperature Distribution and Liquid Film Growth Processes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-13
繳交日期
Date of Submission
2011-09-07
關鍵字
Keywords
噴霧冷卻、液滴、噴霧、μLIF、液膜厚度
spray cooling, μLIF, spray, liquid film thickness, droplets
統計
Statistics
本論文已被瀏覽 5653 次,被下載 1560
The thesis/dissertation has been browsed 5653 times, has been downloaded 1560 times.
中文摘要
本論文以實驗的方式探討噴霧冷卻之熱場特性,本研究所採用的噴嘴口徑 (dj) 為200 μm,加熱面積為45 mm × 45 mm。本論文主要分成兩個部份進行實驗及分析討論。第一部份針對工作流體為純水 (DI water) 與介電液 (FC-72),在不同功率下觀測加熱器表面液膜厚度的變化,並以熱傳率 (Q) 與操作壓力 (ΔP) 為主要參數,探討這兩項參數對於噴霧冷卻的液膜厚度的影響。第二部份針對工作流體為DI water,利用μLIF系統 (螢光染劑為Rhodamine B其濃度為1.5×10-4 M) 的方式量測不同工作流體溫度 (23 °C、30 °C及40 °C) 對於噴霧的全域溫度分佈、加熱器表面液膜溫度變化與噴霧冷卻的熱場情況,探討液滴在冷卻過程中,內部的物理現象。
Abstract
The aim of this study was to explore the properties of thermal field in spray cooling via experiments. The nozzle diameter (dj) used herein was 200 μm and the heating surface measured 45 mm × 45 mm. The study was divided into two parts for experiments and analyses. In the first part, with DI water and FC-72 (dielectric liquid) as the working media, the changes in the liquid film thickness on the heater surface under different values of heating power were observed; heat input (Q) and value of gauge pressure (ΔP) were taken as the main parameters for discussing the influence of these two parameters on the liquid film thickness in spray cooling. The second part, with DI water as the working medium, adopted the μLIF system (fluorescent dye: Rhodamine B; concentration: 1.5×10-4 M) to measure the effect of different working medium temperatures (23 °C, 30 °C, and 40 °C) on the global temperature distribution, liquid film temperature changes on the heater surface and the thermal field condition of spray cooling, with an aim of exploring the internal physical phenomena of the droplets during cooling.
目次 Table of Contents
目錄.......................................................................................... i
表目錄.................................................................................. iii
圖目錄.................................................................................... iv
符號說明................................................................................ vi
中文摘要.............................................................................. viii
英文摘要................................................................................ ix
第一章 序論........................................................................ 1
1-1 前言................................................................................ 1
1-2 噴霧冷卻發展之背景.................................................... 2
1-3 文獻回顧........................................................................ 4
1-4 研究目的...................................................................... 13
第二章 實驗系統與設備.................................................. 14
2-1 μLIF系統...................................................................... 14
2-2 噴霧系統...................................................................... 15
2-3 實驗環路系統.............................................................. 15
2-3-1 噴霧閉環路系統...................................................... 16
2-3-2 噴霧恆溫循環系統.................................................. 17
2-4 測試區......................................................................... 17
2-5 加熱系統..................................................................... 17
第三章 實驗方法及步驟.................................................. 26
3-1 工作流體配製.............................................................. 26
3-2 光學量測系統建立及原理.......................................... 26
3-3 噴霧液膜厚度觀測...................................................... 28
第四章 理論分析.............................................................. 32
4-1 韋伯數 (We) 定義與計算........................................... 32
4-2 雷諾數 (Re) 定義與計算............................................ 34
4-3 紐塞數 (Nu) 定義與計算............................................ 34
4-4 賈克布數 (Ja) 定義與計算......................................... 35
4-5 噴霧錐角 (β) 定義....................................................... 36
4-6 質量通量 (G) 計算...................................................... 36
4-7 沸騰數 (Bo) 定義與計算............................................ 37
第五章 誤差分析.............................................................. 39
第六章 結果與討論.......................................................... 42
6-1 噴霧特性分析.............................................................. 42
6-2 噴霧熱場分析.............................................................. 44
6-3 液膜厚度觀測.............................................................. 45
第七章 結論與建議.......................................................... 65
7-1 結論.............................................................................. 65
7-2 建議與改進.................................................................. 66
參考文獻.............................................................................. 67
附錄A.................................................................................... 74
參考文獻 References
1. S. M. De Corso, 1960, "Effect of Ambient and Fuel Pressure on Spray Drop Size," J. Eng. Power -Trans. ASME, Vol. 82, pp. 10-18.
2. N. Dombrowski and W. R. Johns, 1963, "The Aerodynamic Instability and Disintergration of Viscous Liquid Sheets," Chem. Eng. Sci., Vol. 18, pp. 203-214.
3. L. H. Wachter and N. A. J. Westerling, 1966, "The Heat Transfer From a Hot Wall to Impinging Water Drops in the Spheroidal State," Chem. Eng. Sci., Vol. 21, pp. 1047-1056.
4. N. K. Rizk and A. H. Lefebvre, 1984, "Internal Flow Characteristics of Simplex Swirl Atomizers," AIAA, Aerospace Sciences Meeting, 22nd, Reno, NV, AIAA-1984-0124.
5. J. Ortman and A. H. Lefebvre, 1985, "Fuel Distributions from Pressure Swirl Atomizers," J. Propul. Power, Vol. 1, pp. 11-15.
6. J. K. Choi and S. C. Yao, 1987, "Mechanisms of Film Boiling Heat Transfer of Normally Impacting Spray," Int. J. Heat Mass Transf., Vol. 30, No.2, pp. 311-318.
7. X. F. Wang and A. H. Lefebvre, 1987, "Mean Drop Sizes from Pressure Swirl Nozzles," J. Propul. Power, Vol. 3, No. 1, pp. 11-18.
8. A. R. Jones, 1982, "Design Optimization of a Large Pressure-Jet Atomizer for Power Plant," Proceedings of the 2nd Int. Conference on Liquid Atomization and Sprays, Madison, Wis., pp. 181-185.
9. L. C. Chow, D. E. Tilton, and M. R. Pasi, 1989, "High Power Density Spray Cooling," Technical Report, Wright Research & Development Center, WRDC-TR-89-2082.
10. S. Chandra and C. T. Avedisian, 1991, "On the Collision of a Droplet with a Solid Surface," Proc. R. Soc., Vol. 432, pp. 13-41.
11. Q. V. Nguyen, R. H. Rangle, and D. Dunn-Rankin, 1991, "Measurement and Prediction of Trajectories and Collision of Droplets," Int. J. Multi. Flow, Vol. 10, No. 2, pp. 159-177.
12. M. Ghodbane and J. P. Holman, 1991, "Experimental Study of Spray Cooling with Freon-113," Int. J. Heat Mass Transf., Vol. 34, pp. 1163-1174.
13. M. S. Sehmbey, M. R. Pais, and L. C. Chow, 1992, "Effect of Surface Material Properties and Surface Charateristics in Evaporative Spray Cooling," J. Thermophys. Heat Transf., Vol. 6, pp. 505-512.
14. M. R. Pais, L. C. Chow, and E.T. Mahefkey, 1992, "Surface Roughness and its Effects on the Heat Transfer Mechanism in Spray Cooling," J. Heat Transf. -Trans. ASME, Vol. 114, pp. 211-219.
15. F. R. Zhang, S. Wakabayashi, and N. Tokuoka, 1994, "The Spray Structure from Swirl Atomizer (1st Report, General Characteristics and Structure of a Spray of Swirl Atomizers)," Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, Vol. 60, No. 570, pp. 675-680.
16. M. Kato, Y. Abe, Y. H. Mori, and A. Nagashima, 1995, "On the Spray Cooling Characteristics Under Reduced Gravity," J. Thermophys. Heat Transf., Vol. 9, No. 2, pp. 378-381.
17. T. Oka, Y. Abe, Y. H. Mori, and A. Nagashima, 1995, "Pool Boiling of N-Pentane, CFC-133, and Water Under Reduced Gravity," J. Heat Transf. -Trans. ASME, Vol. 117, pp. 408-417.
18. K. A. Estes and I. Mudawar, 1995, "Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces," Int. J. Heat Mass Transf., Vol. 38, pp. 2895-2996.
19. G. M. Faeth and L. P. Hsiang, 1995, "Structure and Breakup Roperties of Sprays," Int. J. of Multi. Flow, Vol. 21, pp. 99-127.
20. J. E. Gonzalez and W. Z Black, 1997, "Study of Droplet Sprays Prior to Impact on a Heated Horizontal Surface," J. Heat Transf. -Trans. ASME, Vol. 119, pp. 279-287.
21. J. D. Bernardin, C. J. Stebbins, and I. Mudawar, 1997, "Mapping of Impact and Heat Transfer Regimes of Water Drops Impinging on a Polished Surface," Int. J. Heat Mass Transf., Vol.40, pp.247-267.
22. K. Sone, K. Yoshida, T. Oka, Y. Abe, Y. Miri, and A. Nagashima, 1996 "Spray Cooling Characteristics of Water and FC-72 under Reduced and Elevated Gravity for Space Application," Energy Conversion Engineering Conference, IECEC 96, Proceedings of the 31st Intersociety, pp. 1500-1505.
23. B. W. Webb, K. Oliphant, and M. Q. Mcquay, 1998, "An Experimental Comparison of Liquid Jet Array and Spray Impingement Cooling in the Non-Boiling Regime," Exp. Therm. Fluid Sci., Vol. 18, pp. 1-10.
24. P. Tartarini, G. Lorenzini, and M. R. Randl, 1999, "Experimental Study of Water Droplet Boiling on Hot, Non-Porous Surface," Heat Mass Transf., Vol. 34, pp. 437-447.
25. C. Humberto, A.M. Kubitzek, and O. Frank, 1999, "Dynamic Processes Occurring During the Spreading of Thin Liquid Films Produced by Drop Impact on Hot Walls," Int. J. Heat Fluid Flow, Vol. 20 , pp. 470-476.
26. J. J. Huddle, L. C. Chow, S. Lei, A. Marcos, D.P. Rini, S. J., II Lindauer, M. Bass, and P.J. Delfyett, 2000, "Thermal Management of Diode Laser Arrays," 16th IEEE SEMI-THERM Symposium, pp.154 -160.
27. J. Y. Murthy, S. C. Yao, K. Gabriel,, P. Kumta, C. H. Amon, D. Boyalakuntla, C. C. Hsieh, A. Jain, S. V. J. Narumanchi, K. Rebello, and C. F. Wu, 2001, "MEMS-Based Thermal Management of Electronics Using Spray Impingement," Proceedings of IPACK’01 The Pacific Rim/ASME International Electronic Packaging, July 8-13, Kauai, Hawaii, USA, pp.1-12.
28. K. I. Yoshida, Y. Abe, T. Oka, E. H. Mori, and A. Nagashima, 2001, "Spray Cooling Under Reduced Gravity Condition," J. Heat Transf. -Trans. ASME, Vol. 123, pp. 309-318.
29. G. Aguilar, W. Verkruysse, B. Majaron, L. O. Svaasand, E. J. Lavernia, and J. S. Nelson, 2001, "Measurement of Heat Flux and Heat Transfer Coefficient During Continuous Cryogen Spray Cooling for Laser Dermatologic Surgery," JSTQE, Vol. 7, pp. 1013-1021.
30. B. M. Pikkula, J. H. Torres, J. W. Tunnel, and B. Anvari, 2001, "Cryogen Spray Cooling: Effect of Droplet Size and Spray Density on Heat Removal," Lasers Surg. Med., Vol. 28, pp. 103-112.
31. D. Kearns, D. H. Jian, R. H. Chen, and L. C. Chow, 2002, "A Parametric Study of Dielectric Spray Cooling of a Row of Heaters in a Narrow Channel," 18th IEEE SEMI-THERM Symposium, pp. 164-168.
32. S. -S. Hsieh, T. C. Fan, and H. H. Tsai, 2004, "Spray Cooling Characteristics of Water and R-134a. Part I: Nucleate Boiling, " Int. J. Heat Mass Transf., Vol. 47, pp. 5703-5712.
33. S. -S. Hsieh, T. C. Fan, and H. H. Tsai, 2004, "Spray Cooling Characteristics of Water and R-134a. Part II: Transient Cooling,” Int. J. Heat Mass Transf., Vol. 47, pp. 5713-5724.
34. B. Horacek, K. T. Kiger, and J. Kim, 2005, "Single Nozzle Spray Cooling Heat Transfer Mechanisms," Int. J. Heat Mass Transf., Vol. 48, pp. 1425-1438.
35. B. Q. Li, T. Cader, J. Schwarzkopf, K. Okamoto, and B. Ramaprian, 2006, "Spray Angle Effect During Spray Cooling of Microelectronics: Experimental Measurements and Comparison with Inverse Calculations," Appl. Therm. Eng., Vol. 26, pp. 1788-1795.
36. S. -S. Hsieh and H. H. Tsai, 2006, "Thermal and Flow Measurements of Continuous Cryogenic Spray Cooling," Arch. Dermatol. Res., Vol. 298, pp. 82-96.
37. S. -S. Hsieh and C. H. Tien, 2006, "R-134a Spray Dynamics and Impingement Cooling in the Non-Boiling Regime," Int. J. Heat Mass Transf., Vol. 50, pp. 502-512.
38. G. Castanet, C. Maqua, M. Orain, F. Grisch, and F. Lemoine, 2007, "Investigation of Heat and Mass Transfer Between the Two Phases of an Evaporating Droplet Stream Using Laser-induced Fluorescence Techniques: Comparison with Modeling," Int. J. Heat Mass Transf., Vol. 50, pp. 3670-3683.
39. A. R. Griffin, A. Vijayakumar, R. H. Chen, K. B. Sundaram, and L. C. Chow, 2008, "Development of a Transparent Heater to Measure Surface Temperature Fluctuations Under Spray Cooling Conditions", J. Heat Transf. -Trans. ASME, Vol. 130, pp. 114501(4 pp.).
40. M. R. O. Panao and A.L.N. Moreira, 2009, "Heat Transfer Correlation for Intermittent Spray Impingement:A Dynamic Approach", Int. J. Heat Mass Transf., Vol.48, pp. 1853–1862.
41. W. L. Cheng, F. Y. Han, Q. N. Liu, and H. L. Fan, 2011, "Spray Characteristics and Spray Cooling Heat Transfer in the Non-Boiling Regime," Energy, Vol. 36, pp. 3399-3405.
42. M. C. J. Coolen, R. N. Kieft, C. C. M. Rindt, and A. A. van Steenhoven, 1999, "Application of 2-D LIF Temperature Measurements in Water Using a Nd: YAG Laser," Exp. Fluids, Vol. 27, pp. 420-426.
43. D. Ross, M. Gaitan, and L. E. Locascio, 2001, "Temperature Measurement in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye,"Anal. Chem., Vol. 73, pp. 4117-4123.
44. I. Mudawar and K. A. Estes, 1996, "Optimizing and Predicting CHF in Spray Cooling of a Square Surface," J. Heat Transf. -Trans. ASME, Vol. 118, pp.672-679.
45. Q. Cui, S. Chandra, and S. McCahan, 2003, "The Effect of Dissolving Salts in Water Sprays Used for Quenching a Hot Surface: Part 2-Spray Cooling," J. Heat Transf. -Trans. ASME, Vol. 125, pp. 333-338.
46. M. Ghodbane and J. P. Holman, 1997, "Experimental Study of Spray Cooling with Freon-113," Int. J. Heat Mass Transf., Vol. 34, pp. 1163-1174.
47. J. R. Taylor, 1997, An Introduction to Error Analysis: the study of uncertainties in physical measurements, 2nd ed., University Science Books, Sausalito, California.
48. I. Mudawar and M. Visaria, 2008, "Effects of High Subcooling on Two-Phase Spray Cooling and Critical Heat Flux," Int. J. Heat Mass Transf., Vol. 51, pp. 5269-5278. 
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code