Responsive image
博碩士論文 etd-0907111-161025 詳細資訊
Title page for etd-0907111-161025
論文名稱
Title
微型直接甲醇燃料電池陽極CO2產生/排除觀測與性能分析
Visualization of CO2 Gas Bubbles Generation / Removal in Anode and Performance Analysis of a μDMFC
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-13
繳交日期
Date of Submission
2011-09-07
關鍵字
Keywords
壓力降、可視化、CO2氣泡、性能、微型直接甲醇燃料電池
cell performance, CO2 bubbles, pressure drop, μDMFC, visualization
統計
Statistics
本論文已被瀏覽 5701 次,被下載 423
The thesis/dissertation has been browsed 5701 times, has been downloaded 423 times.
中文摘要
本研究主要是微型直接甲醇燃料電池(μDMFC)的性能分析及觀測其陽極流道CO2氣泡變化,所使用的流道板是以黃光微影製程(LIGA-Like)及微電鑄技術製作,並以蛇行狀(Serpentine)作為流道的幾何結構,藉由透明壓克力作為兩側端板以觀測陽極流道CO2氣泡的變化。本實驗主要是針對μDMFC陽極CO2產生/排除的過程,配合微質點測速儀(μPIV) 建立可視化觀測的實驗技術,並探討CO2氣泡於液體甲醇溶液和微流道的變化。在實驗操作中以陽極與陰極流量、甲醇濃度及操作溫度為主要參數,探討對於燃料電池的極化曲線與功率密度的影響,並將實驗結果以V-I曲線與P-I曲線表示,並且探討陽極壓力降對於CO2氣泡移動以及性能之間的關係。
Abstract
The main objective of this research is to analyze the performance of micro direct methanol fuel cell (μDMFC) and observe the bubble behavior of carbon dioxide in the anode flow channel. The flow plate adopted in this study was manufactured through deep UV lithography manufacturing and micro-electroforming manufacturing process. The geometrical configuration of the flow field is in the serpentine form. Transparent acrylic (PMMA: Polymethylmethacrylate) was used to make the terminal plate placed on both sides of the cell in order to facilitate the observation of the bubble behavior of carbon dioxide in the anode flow channel. In this experiment, Micro Particle Image Velocimetry (μPIV) is used in order to investigate the generation / removal process of carbon dioxide from the anode of micro direct methanol fuel cell (μDMFC) through a visualized observation method. The behavior of carbon dioxide bubbles in liquidized methanol solution and micro flowfield is also explored. Major parameters of the experiment operation that consist of flow rate of anode and cathode, density of methanol and operational temperature are used to explore their influences on the fuel cell’s polarization curve and power density. The results are presented by V-I curve and P-I curve. The relation between carbon dioxide bubble movement and behavior according to the anode pressure drop are also discussed.
目次 Table of Contents
目 錄 .......................................................................................................... i
表 目 錄 ................................................................................................ iii
圖 目 錄 ................................................................................................ iv
符 號 說 明 ........................................................................................ vi
中 文 摘 要 ...................................................................................... viii
英 文 摘 要 ........................................................................................ ix
第一章 序論 ............................................................................................... 1
1-1 前言 ............................................................................................. 1
1-2 燃料電池發展之背景 ................................................................. 3
1-3 文獻回顧 ..................................................................................... 5
1-4 研究目的 ................................................................................... 13
第二章 實驗系統與設備 ......................................................................... 17
2-1 直接甲醇燃料電池組成元件................................................... 17
2-2 直接甲醇燃料電池電化學反應 .............................................. 22
2-3 燃料電池設計要點 ................................................................... 25
2-4 微型直接甲醇燃料電池組元件設計與製作 .......................... 27
2-5 微型直接甲醇燃料電池組裝................................................... 31
第三章 實驗相關設備與元件材料 ......................................................... 40
3-1 實驗設備 ................................................................................... 40
3-2 實驗元件材料 ........................................................................... 44
第四章 燃料電池性能分析 ..................................................................... 50
4-1 電極熱力學 ............................................................................... 50
4-2 極化現象 ................................................................................... 57
4-3 甲醇橫滲 ................................................................................... 60
第五章 誤差分析 ..................................................................................... 64
第六章 結果與討論 ................................................................................. 68
6-1 甲醇濃度對於電池性能的影響 .............................................. 69
6-2 操作溫度對於電池性能的影響 .............................................. 70
6-3 流量對於電池性能的影響 ....................................................... 72
6-4 陽極壓力降對於電池性能的影響 .......................................... 73
6-5 觀測陽極CO2氣泡對於電池性能的影響 .............................. 74
6-6 CO2氣泡排除機制分析 ........................................................... 76
第七章 結論與建議 ................................................................................. 99
7-1 結論 ........................................................................................... 99
7-2 建議 ......................................................................................... 101
參考文獻 ................................................................................................. 102
附錄A ..................................................................................................... 109
參考文獻 References
1. R. Jiang and D. Chu, 2001, "Stack Design and Performance of Polymer Electrolyte Membrane Fuel Cell," J. Power Sources, Vol. 93, pp. 25-31.
2. S. C. Thomas, X. Ren, S. Gottesfeld, and P. Zelenay, 2002, "Direct Methanol Fuel Cells: Progress in Cell Performance and Cathode Research," Electrochim. Acta, Vol. 47, pp.3741-3748
3. D. Natarajan and T. V. Nguyen, 2003, "Three-Dimensional Effects of Liquid Water Flooding in the Cathode of a PEM Fuel Cell," J. Power Sources, Vol. 115, pp. 66-80.
4. S. -S. Hsieh, J. K. Kuo, C. F. Hwang, and H. H. Tsai, 2004, "A Novel Design and Microfabrication for a Micro PEMFC," Microsystem Technologies, Vol. 10, pp. 121-126.
5. G. Q. Lu and C. Y. Wang, 2004, "Electrochemical and Flow Characterization of a Direct Methanol Fuel Cell," J. Power Sources, Vol. 134, pp. 33-40.
6. T. Bewer, T. Beckmann, H. Dohle, J. Mergel, and D. Stolten, 2004, "Novel Method for Investigation of Two-phase Flow in Liquid Feed Direct Methanol Fuel Cells Using An Aqueous H2O2 Solution," J. Power Sources, Vol.125, pp. 1-9.
7. H. Yang, T. S. Zhao, and Q. Ye, 2005, 'Pressure Drop Behavior in the Anode Flow Field of Liquid Feed Direct Methanol Fuel Cells,' J. Power Sources, Vol. 142, pp. 117-124.
8. H. Yang and T. S. Zhao, 2005, "Effect of Anode Flow Field Design on the Performance of Liquid Feed Direct Methanol Fuel Cell," Electrochim. Acta, Vol. 50, pp. 3243-3252.
9. H. Yang, T. S. Zhao, and Q. Ye, 2005, "In Situ Visualization Study of CO2 Gas Bubble Behaviour in DMFC Anode Flow Field," J. Power Sources, Vol. 139, pp. 79-90.
10. Q. Ye, T. S. Zhao, H. Yang, and J. Prabhuram, 2005, "Eletrochemical Reaction in a DMFC under Open-Circuit Conditions," Electrochem. Solid State Lett., Vol. 8, pp. A52-A54.
11. J. G. Liu, T. S. Zhao, Z. X. Liang, and R. Chen, 2006, "Effect of Membrane Thickness on the Performance and Efficiency of Passive Direct Methanol Fuel Cells," J. Power Sources, Vol. 153, pp. 61-67.
12. C. W. Wong, T. S. Zhao, Q. Ye, and J. G. Liu, 2006, "Experimental Investigations of the Anode Flow Field of A Micro Direct Methanol Fuel Cell," J. Power Sources, Vol. 155, pp. 291-296.
13. S. -S. Hsieh, S. H. Yang, J. K. Kuo, C. F. Huang, and H. H. Tsai, 2006, "Study of Operational Parameters on the Performance of Micro PEMFCs with Different Flow Fields," Energy Conv. Manag., Vol. 47, pp. 1868-187.
14. S. -S. Hsieh, C. L. Feng, and C. F. Huang, 2006, "Development and Performance Analysis of a H2/Air Micro PEM Fuel Cell Stack," J. Power Sources, Vol. 163, pp. 440-449.
15. V. V. Nikam and R. G. Reddy, 2006, "Copper Alloy Bipolar Plates for Polymer Electrolyte Membrane Fuel Cell," Electrochim. Acta, Vol. 51, pp. 6338-6345.
16. Q. Liao, X. Zhu, X. Zheng, and Y. Ding, 2007, "Visualization Study on the Dynamics of CO2 Bubbles in Anode Channels and Performance of a DMFC," J. Power Sources, Vol. 171, pp. 644-651.
17. S. -S. Hsieh and K. M. Chu, 2007, "Channel and Rib Geometric Scale Effects of Flowfield Plates on the Performance and Transient Thermal Behavior of a Micro PEM Fuel Cell," J. Power Sources, Vol.173, pp. 222-232.
18. S. -S. Hsieh and B. S. Her, 2007, "Heat Transfer and Pressure Drop in Serpentine μDMFC Flow Channels," Int. J. Heat Mass Transf., Vol. 50, pp. 5323-5327.
19. W. W. Yang and T. S. Zhao, 2007, "A Two-Dimensional, Two-Phase Mass Transport Model for Liquid-Feed DMFCs," Electrochim. Acta, Vol. 52, pp. 6125-6140.
20. C. Y. Du, T. S. Zhao, and W. W. Yang, 2007, "Effect of Methanol Crossover on the Cathode Behavior of a DMFC:A Half Cell Investigation," Electrochim. Acta, Vol. 171, pp. 644-651.
21. C. Xu, T. S. Zhao, and Y. L. He, 2007, "Effect of Cathode Gas Diffusion Layer on Water Transport and Cell Performance in Direct Methanol Fuel Cells," J. Power Sources, Vol. 168. pp. 143-153.
22. D. Spernjak, A. K. Prasad, and S. G. Advani, 2007, "Experimental Investigation of Liquid Water Formation and Transport in a Transparent Single-Serpentine PEM Fuel Cell," J. Power Sources, Vol.170, pp. 334-344.
23. G. Strickland, S. Litster, and J. G. Santiago, 2007, "Current Distribution in Polymer Electrolyte Membrane Fuel Cell with Active Water Management," J. Power Sources, Vol. 174. pp. 272-281.
24. H. K. Atiyeh, K. Karan, B. Peppley, A. Phoenix, E. Halliop, and J. Pharoah, 2007, "Experimental Investigation of the Role of a Microporous Layer on the Water Transport and Performance of a PEM Fuel Cell," J. Power Sources, Vol. 170, pp. 111-121.
25. J. Zhang, G. P. Yin, Q. Z. Lai, Z. B. Wang, K. D. Cai, and P. Liu, 2007, "The Influence of Anode Gas Diffusion Layer on the Performance of Low -Temperature DMFC," J. Power Sources, Vol. 168, pp. 453-458.
26. J. Y. Park, J. H. Lee, S. K. Kang, J. H. Sauk, and I. Song, 2008, "Mass Balance Research for High Electrochemical Performance Direct Methanol Fuel Cells with Reduced Methanol Crossover at Various Operating Conditions," J. Power Sources, Vol. 178, pp. 181-187.
27. J. S. Yang, J. S. Park, S. I. Kim, S. Y. Lim, Y. T. Kim, and I. K. Han, 2008, "I-V Characteristics of Methanol Sensor for Direct Methanol Fuel Cell(DMFC)as a Function of Deposited Platinum(Pt)Thickness," Microelectronics J.. Vol. 39, pp. 1140-1143.
28. C. R. Buie and J. G. Santiago, 2009, 'Two-Phase Hydrodynamics in a Miniature Direct Methanol Fuel Cell,' Int. J. Heat Mass Transf., Vol. 52, pp. 5158-5166.
29. D. D. Meng and C. J. Kim, 2009, 'An Active Micro-Direct Methanol Fuel Cell with Self-Circulation of Fuel and Built-in Removal of CO2 Bubbles,' J. Power Sources, Vol. 194, pp. 445-450.
30. T. S. Zhao, C. Xu, R. Chen, and W. W. Yang, 2009, 'Mass Transport Phenomena in Direct Methanol Fuel Cells,' Prog. Energy Combust. Sci., Vol. 35, pp. 275-292.
31. Y. Gao, X. Kong, N. Munroe, and K. Jones, 2010, 'Evaluation of Silver as a Miniature Direct Methanol Fuel Cell Electrode,' J. Power Sources, Vol. 195, pp. 46-53.
32. G. He, Y. Yamazaki, and A. A. Abudula, 2010, 'The Effect of Wall Roughness on the Liquid Removal in Micro-Channels Related to a Proton Exchange Membrane Fuel Cell (PEMFC),' J. Power Sources, Vol. 195, pp. 1561-1568.
33. S. -S. Hsieh, H. C. Wu, and B. S. Her, 2010, 'A Novel Design for A flow field Configuration, of a Direct Methanol Fuel Cell,' J. Power Sources, Vol. 195, pp. 3224-3230.
34. Y. Tang, W. Yuan, M. Pan, B. Tang, Z. Li, and Z. Wan, 2010, 'Effects of Structural Aspects on the Performance of A Passive Air-breathing Direct Methanol Fuel Cell,' J. Power Sources, Vol. 195, pp. 5628-5636.
35. S. L. Chen, C. T. Lin, C. C. Chieng, and F. G. Tseng, 2010, 'Highly Efficient CO2 Bubble Removal on Carbon Nanotube Supported Nanocatalysts for Direct Fuel Cell,' J. Power Sources, Vol. 195, pp. 1640-1646.
36. S. -S. Hsish and W. -C. Chen, 2010, "Performance Tests and Pressure Drop Measurements in the Anode Flowfield of a μDMFC," Fuel Cell, Vol. 10, pp. 597-607.
37. Y. Lu and R. G. Reddy, 2011, 'Effect of Flow Fields on the Performance of Micro-direct Methanol Fuel Cells,' J. Power Sources, Vol. 36 pp. 822-829
38. H. C. Yeh, R. J. Yang, W. J. Luo, J. Y. Jiang, Y. D. Kuan, and X. Q. Lin, 2011, 'The Performance Analysis of Direct Methanol Fuel Cells with Different Hydrophobic Anode Channels,' J. Power Sources, Vol. 196, pp. 270-278.
39. D. H. Jung, C. H. Lee, C. S. Kim, and D. R. Shin, 1998, "Performance of a Direct Methanol Polymer Electrolyte Fuel Cell," J. Power Sources, Vol. 71, pp. 169-173.
40. A. K. Shukla, M. Neergat, Parthasarathi Bera, V. Jayaram, and M. S. Hegde, 2001, "An XPS Study on Binary and Ternary Alloys of Transition Metals with Platinized Carbon and its Bearing upon Oxygen Electroreduction in Direct Methanol Fuel Cells,' J. Electroanal. Chem. Vol. 504, pp. 111-119.
41. K. Kleiner, 2006, "Assault on Batteries,' Nature, Vol. 441, pp. 1046-1047.
42. T. Frelink, W. Visscher, and J. A. R. van Veen, 1995, "On the Role of Ru and Sn as Promotors of Methanol Electro-oxidation Over Pt,' Surf. Sci., Vol. 335, pp. 353-360.
43. B. R. Rauhe, F. R. Mclarnon, and E. J. Cairns, 1995, "Direct Anodic-Oxidation of Methanol on Supported Platinum Ruthenium Catalyst in Aqueous Cesium Carbonate," J. Electrochem Soc., Vol. 335, pp. 353-360.
44. T. Freelink, W. Visscher, A. P. Cox, and J. A. R. Van Veen , 1995, "Ellipsometry and Dems Study of the Electrooxidation of Methanol at Pt and Ru- and Sn- Promoted Pt,' Electrochim. Acta, Vol. 40, No. 10, pp. 1537-1543.
45. A. Kundu, J. H. Jang, J. H. Gill, C. R. Jung, H. R. Lec, S. H. Kim, and Y. S. Oh, 2007, 'Micro Fuel Cells Current Development and Applications,' J. Power Sources, Vol. 170, pp. 67-68.
46. S. S. T. Kline and F. A. Mcclintock, 1953, 'Describing Uncertainties in Single-Sample Experiments,' Mechanical Engineering, Vol. 75, pp. 3-8.
47. R. J. Moffat, 1982, 'Contributions to the Theory of Single-Sample Uncertainty Analysis,' J. Fluids Eng.-Trans. ASME, Vol. 104, pp. 250-260.
48. John R. Taylor, 1997, An Introduction to Error Analysis, University Science Books, Sausalito, California.
49. G. Liu, J. Xu, T. Wang, T. Zhao, M. Wang, Y. Wang, and J. Li, X. Wang, 2010, 'The Performance and Mechanism of Multi-step Activation of MEA for DMFC,' Int. J. Hydrog. Energy, Vol. 35, pp. I2341-I2345.
50. W. W. Yang and T. S. Zhao, 2007, 'A Two-Dimensional, Two-Phase Mass Transport Model for Liquid-Feed DMFCs,' Electrochim. Acta, Vol. 52, pp. 6125-6140.
51. C. Xu, A. Faghri, X. Li, and T. Ward, 2010, 'Methanol and Water Crossover in a Passive Liquid-Feed Direct Methanol Fuel Cell,' Int. J. Hydrog. Energy, Vol. 35, pp. 1768-1777.
52. T. Z. Yan and T. C. Jen, 2008, 'Two-Phase Flow Modeling of Liquid-Feed Direct Methanol Fuel Cell,' Int. J. Heat Mass Transf., Vol. 51, pp. 1192-1204.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code