Responsive image
博碩士論文 etd-0907111-163412 詳細資訊
Title page for etd-0907111-163412
論文名稱
Title
具雙峰晶粒徑分佈的電鍍純鎳與鎳鈷合金 機械性質研究
Mechanical Properties of electrodeposited Ni and Ni-Co alloys having bimodal distribution of grain size
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-08-16
繳交日期
Date of Submission
2011-09-07
關鍵字
Keywords
電鍍、鎳鈷合金、雙峰晶粒徑、機械性質、延展性
ductility, mechanical properties, bimodal grain size distribution, Ni-Co alloy, electrodeposition
統計
Statistics
本論文已被瀏覽 5686 次,被下載 0
The thesis/dissertation has been browsed 5686 times, has been downloaded 0 times.
中文摘要
對多晶材料而言,當晶粒徑由微米尺度下降到微奈米尺度時,強度會提升,但是普遍延展性不佳,甚至出現明顯應變集中的現象,因此近年來許多研究聚焦在如何提升微奈米材料的延展性,其中雙峰晶粒徑分佈被認為是方法之一。本實驗利用電鍍製作具備雙峰晶粒徑分佈特性的純鎳與鎳鈷合金試片,研究機械性質與顯微組織的關係,並與具單一晶粒徑分佈的鎳鈷合金進行比較。透過Hall-Petch關係的分析顯示,降伏強度的高低主要取決於材料中小晶粒的平均粒徑,而抗拉強度則由平均晶粒徑大小決定。當小晶粒所佔面積的比例r2小於30%或是大於70%的試片,其延展性較佳。推測原因是在r2小於30% 的情形,大晶粒亂數分佈於小晶粒當中,機械性質由小晶粒主導,而大晶粒能夠增加延展性,造成強度高延展性相對好的材料;r2大於70%時,機械性質由大晶粒主導,小晶粒能夠增加強度,造成延展性好強度相對高的材料。
Abstract
The strength of polycrystalline materials increases with decreasing grain size. The increase of strength is usually associated with deterioration of ductility, especially for materials having sub-micrometer or nanometer in grain size. It has bee suggested that the ductility of submicro- or nano- grained materials can be improved significantly by introducing a bimodal distribution of grain sizes. The purpose of the present study aims at clarifying the microstructural parameters of the bimodal distribution, such as area ratio and size difference, on the strength and ductility of pure nickel and nickel-cobalt specimens produced by electrodeposition. The microstructural parameters were determined from orientation imaging mapping technique using electron backscatter diffraction. Results indicated that the yield strength is mainly determined by the average size of the fine grains, whereas the tensile strength has a good relation with the average grain size in total. Moreover, it was showed that samples having a area ratio of the fine grains lower than 30% or higher than 70% possess a better ductility. The possible mechanism is discussed in detail.
目次 Table of Contents
一、前言 1
二、文獻回顧 3
2-1 微、奈米材料的機械性質 3
2-1-1強度 3
2-1-2提升微奈米材料延展性的方法 4
2-1-3雙峰晶粒徑分佈與延展性 7
2-1-4晶界和延展性 9
2-1-5應變硬化率與延展性 10
2-2鎳鈷合金的機械性質 12
2-2-1鎳鈷合金的強度 12
2-2-2鎳鈷合金的延展性 13
2-3. 電鍍原理 14
2-3-1 法拉第定律 14
2-3-2 極化 14
2-3-3 脈衝電鍍 16
2-3-4 電鍍鎳鈷合金 17
2-3-5 異常共鍍 18
三、實驗方法 19
3-1實驗總流程 19
3-2電鍍製程 19
3-3橫截面硬度測量 20
3-4鍍層成分分析 20
3-5 X-ray分析 20
3-6熱退火處理 20
3-7拉伸實驗 21
3-8 EBSD分析 21
四、實驗結果 22
4-1試片成分、微硬度與X-ray繞射分析 22
4-1-1試片成分與微硬度分析 22
4-1-2 X-ray繞射分析 22
4-2 機械性質分析 23
4-2-1純鎳機械性質 23
4-2-2 Co-15機械性質 24
4-2-3 Co-40機械性質 24
4-2-4退火試片機械性質 25
4-3 EBSD分析 26
4-3-1純鎳EBSD分析 26
4-3-2 Co-15 EBSD分析 28
4-3-3 Co-40 EBSD分析 28
4-3-4退火試片EBSD分析 29
五、討論 31
5-1 晶粒徑與應力 31
5-2 實驗結果討論 32
5-3 強度與延展性 33
六、結論 35
七、文獻回顧 36
參考文獻 References
[1] E.O. Hall, Proc. Soc., 64 (1951) 474
[2] N.J. Petch, J. Iro. Steel Inst., 174 (1953) 25
[3] M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, E. Ma, Acta Materialia, 55 (2007) 4041
[4] E. Ma, JOM, 58 (2006) 49
[5] Y. Wang, M. Chen, F. Zhou, E. Ma, Nature, 419 (2002) 912
[6] 陳祐紳,微奈米晶粒鎳鈷電鍍合金軋延集合組織研究,中山大學材料與光電科學學系,(2010)
[7] X.H. An , Q.Y Lin, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N.Gao, T.G.
Langdon, Scrpta Materialia 64 (2011) 954
[8] R.Z. Valiev, F. Chmelik, F. Bordeaux, G. Kapelski, B. Baudelet, Scripta Metallurgica, 27 (1992) 855
[9] N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Scripta Materialia, 47 (2002) 893
[10] M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Acta
Materialia, 44 (1996) 4619
[11] H. Jiang , Y.T. Zhu , D.P. Butt , I.V. Alexandrov , T.C. Lowe, Materials Science and Engineering A, 290 (2000) 128
[12] R.S. Iyer , C. Frey , S.M.L. Sastry , B.E. Waller , W.E. Buhro , Materials Science and Engineering A, 264 (1999) 210
[13] L.L. Shaw, A.L. Ortiz, J.C. Villegas, Scripta Materialia, 58 (2008) 951
[14] T. Lyman, Metal Handbook-Properties And Selection Of Metals Vol1(8th Edition), American Society for Matals
[15] D.S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, K.J. Hemker, Acta Materialia, 54 (2006) 2253
[16] B.B. Sun, M.L. Sui, Y.M. Wang, G. He, J. Eckert, E. Ma, Acta Materialia, 54 (2006) 1349
[17] E. Ma, Y.M. Wang, Q.H. Lu, M. L. Sui, L. Lu, and K. Lu, Applied Physics Letters, 85 (2004) 4932
[18] Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu, Advance Material, 18 (2006) 2280
[19] X. Wu, N. Tao, Y. Hong, J. Lu, K. Lu, Scripta Materialia, 52 (2005) 547
[20] Y. Ma, A.J. Ardell, Scripta Materialia, 52 (2005) 1335
[21] A.A. Karimpoor, U. Erb, K.T. Aust, G. Palumbo, Scripta Materialia, 49 (2003) 651
[22] Y.M. Wang , E. Ma, Acta Materialia, 52 (2004) 1699
[23] Y.T. Zhu, T.G. Langdon, JOM, 56 (2004) 58
[24] K.M. Youssef, R.O. Scattergood, K.L. Murty, J.A. Horton, C.C. Koch, APPLIED PHYSICS LETTERS, 87 (2005) 091904
[25] M.J.N.V. Prasad, S. Suwas, A.H. Chokshi, Materials Science and Engineering A 503 (2009) 86
[26] T.R. Lee, C.P. Chang, P.W. Kao, Materials Science and Engineering A, 408 (2005) 131
[27] Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, Z. Valiev, Z. Horita, G. Langdon, Y.Z. Zhou, E.J. Lavernia, Applied Physics Letters, 92 (2008) 081903
[28] L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science, 304 (2004) 422
[29] M. Dao, L. Lu, Y.F. Shen, S. Suresh, Acta Materialia 54 (2006) 5421
[30] I. Sabirov, M.R. Barnett, Y. Estrinb, P.D. Hodgsona, Scripta Materialia 61 (2009) 181
[31] H. Zhang, Z. Jiang , J. Lian, Q. Jiang, Materials Science and Engineering A 479 (2008) 136
[32] R.P. Reed, A.F. Clark, editors. Materials at low temperatures. Metals Park (OH): American Society for Metals, 7 (1983) 237
[33] M. Srivastava, V. Ezhil Selvi, V.K. William Grips, K.S. Rajam,
Surface & Coatings Technology 201 (2006) 30510
[34] L.P. Wang, Y. Gao, Q.J. Xue, H.W. Liu, T. Xu, Applied Surface Science 242 (2005) 326
[35] P.L. Sun, Y.H. Zhao, J.C. Cooley, M.E. Kassner, Z. Horita, T.G.
Langdond, E.J. Laverniab, Y.T. Zhug, Materials Science and Engineering A, 525 (2009) 83
[36] 尤光先,電鍍工程學,徐氏基金會出版
[37] 鬱仁貽,實用理論電化學,徐氏基金會出版
[38] 萬其超,電化學,台灣商務印書館發行
[39] M. Schlesinger, M. Paunovic, Modern Electroplating, 4th ed, New York,John Wiley & Sons, (2000)
[40] 劉光泰,探討脈衝電鍍法之電流密度及頻率對奈米銅雙晶之影響,國立成功大學材料科學及工程學系,(2008)
[41] 劉家傑,以電化學沉積系統製備太陽能電池用Culn1-xGaxSe2薄膜吸收層之特性研究及其電化學行為探討,國立東華大學材料科學與工程研究所,(2009)
[42] J.Cl. Puippe, F. Leaman, Theory and Practice of Pulse Plating, Florida,
American Electroplaters and Surface Finishers Society, (1986)
[43]G.. Qiao, T. Jing, N. Wang, Y. Gao, X. Zhao, W. Wang, Electrochimica Acta, 51 (2005) 85
[44] L. Burzy’nska, E. Rudnik, Hydrometallics, 54 (2000) 133
[45] M. Srivastava, V.E. Selvi, V.K. William Grips, K.S. Rajam, Surface &
Coatings Technology, 201 (2006) 3051
[46] N. H. Phan, M. Schwartz, K. Nobe, J. Electrochimica Acta 39 (1994) 449
[47] F. Chonglun, D. L. Pmonty, Electrochimica Acta, 41 (1996) 1713
[48] G. Wu, N. LI, D.R. ZHOU, Journal of Chemical Engineering of Chinese Universities, 19 (2005) 48
[49] A.N. Correia, S.A.S. Machado, Electrochimica Acta, 45 (2000) 1733
[50] E. Gomez, J. Ramirez, E. Valles, J Appl Electrochem, 28 (1998) 71
[51] L. Burzynska, E. Rudnik, Hydrometallury, 54 (2000) 133
[52] OIM Analysis 5.1之說明檔, Copyright 1997-2006, TSL
[53] S.B. Biner, J.R. Morris, Modelling and Simulation in Materials Science and Engineering 10 (2002) 617
[54] D.S. Balint, V.S. Deshpande, A. Needleman, E. Van der Giessen,
International Journal of Plasticity 24 (2008) 2149
[55] F. D. Torre, H. V. Swygenhoven, M. Victoria, Acta Materialia, 50 (2002) 3957
[56] R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh
Acta Materialia 51 (2003) 5159
[57] Y. M. Wang, S. Cheng, Q. M.Wei, E. Ma, T. G. Nieh, A. Hamza, Scripta Materialia, 51 (2004) 1023
[58] F. D. Torre, P. Spatig, R. Schaublin,M. Victoria, Acta Materialia, 53 (2005) 2337
[59] C. Gu, J. Lian, Z. Jiang, Q. Jiang Scripta Materialia 54 (2006) 579
[60] C. Gu, J. Lian, Q. Jiang, Scripta Materialia 57 (2007) 233
[61] I. Matsui, Y. Takigawa, T. Uesugi, K. Higashi, Materials Letters, 65 (2011) 2351
[62] N. Krasilnokov,W. Lojkowski, Z. Pakiela, R. Valiev, Materials Science and Engineering A, 397 (2005) 330
[63] Y. Zhao, T. Topping, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li, W. Liu, Y. Zhu, Y. Zhou, E.J. Lavernia, Advance Material, 20 (2008) 3028
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.221.13.173
論文開放下載的時間是 校外不公開

Your IP address is 18.221.13.173
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code