Responsive image
博碩士論文 etd-0907114-182853 詳細資訊
Title page for etd-0907114-182853
論文名稱
Title
石墨烯於金屬光柵結構上之表面增強拉曼光譜特性之研究
Study of Surface-Enhanced Raman Spectrum(SERS) of Graphene Edges on Metal Gratings
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-10-03
繳交日期
Date of Submission
2014-10-14
關鍵字
Keywords
石墨烯、拉曼光譜、表面增強拉曼散射、表面電漿
graphene, SERS, surface plasmon, Raman spectrum
統計
Statistics
本論文已被瀏覽 5692 次,被下載 1696
The thesis/dissertation has been browsed 5692 times, has been downloaded 1696 times.
中文摘要
拉曼光譜技術具有快速、無損及靈敏度高等優點,已經成為檢測石墨烯樣品和研究其缺陷的最主要工具之一。透過石墨烯拉曼光譜的D-band及拉曼頻移位於1450cm-1和1530cm-1的兩個邊緣聲子模式,可以了解石墨烯薄膜的缺陷或無序的程度。本論文以電子束微影與剝離技術製作奈米等級的金屬光柵,而後使用化學氣相沉積法生長石墨烯層並轉印至金屬光柵上,利用光柵作為耦合表面電漿的媒介,用來產生表面增強拉曼散射效應。藉由觀察石墨烯拉曼光譜的D-band、G-band及1450cm-1和1530cm-1兩個子峰強度在不同光柵週期間的變化,探討光柵的週期大小與拉曼峰強度和峰位間的關係。同時比較黃金光柵與鎳光柵結構上的表面電漿模態,及光柵結構與平整薄膜上石墨烯拉曼訊號間的差異,以驗證表面增強拉曼散射效應的存在。另外也討論一些可能會影響強度的因素,如激發雷射的波長與偏振等;最後探討石墨烯邊緣聲子模式作為檢測石墨烯邊緣缺陷的應用價值。
Abstract
Raman spectroscopy has become one of the most important tools for characterizing and studying defect in graphene, due to its rapid, non-destructive and sensitive technique. Through the D-band and two edge-phonon modes (1450cm-1 & 1530cm-1) of graphene Raman bands can understand the degree of defect or disorder of graphene films. In this thesis, we prepared the nano-metal gratings by E-beam lithography and lift-off process, then using chemical vapor deposition growth of graphene layers and transfer to the metal gratings. Use the grating as medium of surface plasmon coupling to produce SERS effect. By observing the change of D-band、G-band and two sub-peaks intensity during different periods of gratings of Raman spectrum of graphene, explore the relationship between the size of the grating period and the Raman peak intensity and position between peaks. In the meanwhile to compare the surface plasmon mode while gold and nickel grating structure, and also the differences of graphene Raman signals between grating structure and flat film to prove the existence of SERS effect. Besides, we also discussed certain factors which may affect intensity, such as laser excitation wavelength and polarization, and so on. Finally, we discussed graphene edge-phonon mode as the application of graphene defect detection.
目次 Table of Contents
誌謝 i
摘要 ii
Abstract iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言. 1
1.2 文獻回顧與研究動機 2
1.3 論文架構 3
第二章 表面電漿波 4
2.1 金屬的光學性質 4
2.2 金屬平面之表面電漿波模態[12] 7
2.3 具起伏性金屬結構之表面電漿波模態[18] 14
2.4 不同金屬材料之表面電漿波模態 15
第三章 拉曼光譜學 18
3.1 拉曼散射[19] 18
3.2 表面增強拉曼散射 23
3.3 石墨烯之拉曼光譜 26
3.3.1 石墨烯之原子結構 26
3.3.2 石墨烯之拉曼光譜 29
第四章 樣品製備與量測方法 36
4.1 樣品製備與SEM觀測 36
4.1.1 金屬光柵基板之製備 36
4.1.2 石墨烯之製備[33] 38
4.1.3 SEM觀察表面型態 40
4.2 量測架構與方法 47
4.2.1 拉曼光譜量測方法 47
第五章 結果與討論 48
5.1 拉曼光譜分析 48
5.1.1 黃金光柵表面之石墨烯拉曼光譜分析 48
5.1.2 黃金光柵表面之SERS增強分析 50
5.1.3 驗證石墨烯拉曼子峰之成因及其SERS增強分析 52
5.2 表面電漿模態之模擬與分析 56
第六章 結論 59
參考文獻 60
參考文獻 References
1. N. D. Mermin, and H. Wagner, "Absence of Ferromagnetism or Antiferromagnetism in One- or 2-Dimensional Isotropic Heisenberg Models," Phys. Rev. Lett. 17, 1133-& (1966).
2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science 306, 666-669 (2004).
3. A. K. Geim, and K. S. Novoselov, "The Rise of Graphene," Nat. Mater. 6, 183-191 (2007).
4. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh Electron Mobility in Suspended Graphene," Solid State Commun. 146, 351-355 (2008).
5. A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior Thermal Conductivity of Single-Layer Graphene," Nano Lett. 8, 902-907 (2008).
6. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene," Science 320, 1308-1308 (2008).
7. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, "Highly Sensitive Graphene Biosensors Based on Surface Plasmon Resonance," Opt. Express 18, 14395-14400 (2010).
8. X. Ling, L. M. Xie, Y. Fang, H. Xu, H. L. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. F. Liu, "Can Graphene Be Used as a Substrate for Raman Enhancement?," Nano Lett. 10, 553-561 (2010).
9. W. Ren, R. Saito, L. Gao, F. Zheng, Z. Wu, B. Liu, M. Furukawa, J. Zhao, Z. Chen, and H.-M. Cheng, "Edge Phonon State of Mono- and Few-Layer Graphene Nanoribbons Observed by Surface and Interference Co-Enhanced Raman Spectroscopy," Physical Review B 81 (2010).
10. L. B. Gao, W. C. Ren, B. L. Liu, R. Saito, Z. S. Wu, S. S. Li, C. B. Jiang, F. Li, and H. M. Cheng, "Surface and Interference Coenhanced Raman Scattering of Graphene," ACS Nano 3, 933-939 (2009).
11. 張勝雄, 戴朝義, "奈米電漿子波導元件於積體光學之應用," 物理雙月刊 30 (2008).
12. J. R. Sambles, G. W. Bradbery, and F. Z. Yang, "Optical-Excitation of Surface-Plasmons - an Introduction," Contemp. Phys. 32, 173-183 (1991).
13. R. W. Wood, "On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum," Proceedings of the Physical Society of London 18, 269 (1902).
14. U. Fano, "The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’S Waves)," J. Opt. Soc. Am. 31, 213-222 (1941).
15. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface Plasmon Subwavelength Optics," Nature 424, 824-830 (2003).
16. C. C. Han, "Study of Optically Tunable Surface Plasmon Resonance Based on Dye-Doped Liquid Crystal Cladded Kretschmann Structure and Its Applications," in Department of Photonics(National Sun Yet-sen University, 2013), pp. 18-20.
17. Y. J. Hung, Smolyaninov, II, C. C. Davis, and H. C. Wu, "Fluorescence Enhancement by Surface Gratings," Opt. Express 14, 10825-10830 (2006).
18. 吳民耀, 劉威志, "表面電漿子理論與模擬," 物理雙月刊 28 (2006).
19. 程光煦, 拉曼布里淵散射 (科學出版社, 2001).
20. 張樹霖, 拉曼光譜學與低維奈米半導體 (科學出版社, 2008).
21. "Theory of Raman Spectroscopy," http://www.expertsmind.com/topic/raman-spectroscopy/theory-of-raman-spectroscopy-913582.aspx.
22. M. Kahl, and E. Voges, "Analysis of Plasmon Resonance and Surface-Enhanced Raman Scattering on Periodic Silver Structures," Physical Review B 61, 14078-14088 (2000).
23. J. C. Charlier, P. C. Eklund, J. Zhu, and A. C. Ferrari, "Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes," in Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, A. Jorio, G. Dresselhaus, and M. S. Dresselhaus, eds. (Springer-Verlag Berlin, Berlin, 2008), pp. 673-708.
24. A. C. Ferrari, and D. M. Basko, "Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene," Nat. Nanotechnol. 8, 235-246 (2013).
25. 樊曉峰, 郭哲來, "單層石墨烯的計算物理研究之介紹," 物理雙月刊 33 (2011).
26. M. S. Dresselhaus, G. Dresselhaus, and M. Hofmann, "Raman Spectroscopy as a Probe of Graphene and Carbon Nanotubes," Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 366, 231-236 (2008).
27. T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, "Uniaxial Strain in Graphene by Raman Spectroscopy: G Peak Splitting, Gruneisen Parameters, and Sample Orientation," Physical Review B 79, 8 (2009).
28. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, "Raman Spectroscopy in Graphene," Phys. Rep.-Rev. Sec. Phys. Lett. 473, 51-87 (2009).
29. F. Tuinstra, and J. L. Koenig, "Raman Spectrum of Graphite," J. Chem. Phys. 53, 1126-& (1970).
30. A. C. Ferrari, and J. Robertson, "Interpretation of Raman Spectra of Disordered and Amorphous Carbon," Physical Review B 61, 14095-14107 (2000).
31. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, "Raman Spectrum of Graphene and Graphene Layers," Phys. Rev. Lett. 97, 4 (2006).
32. T. Kawai, Y. Miyamoto, O. Sugino, and Y. Koga, "Graphitic Ribbons without Hydrogen-Termination: Electronic Structures and Stabilities," Physical Review B 62, R16349-R16352 (2000).
33. Y. P. Hsieh, Y. W. Wang, C. C. Ting, H. C. Wang, K. Y. Chen, and C. C. Yang, "Effect of Catalyst Morphology on the Quality of Cvd Grown Graphene," J. Nanomater., 6 (2013).
34. J. Xie, and J. P. Spallas, "Different Contrast Mechanisms in Sem Imaging of Graphene," A. Technologies, ed. (2012).
35. X. F. Wang, Y. P. Chen, and D. D. Nolte, "Strong Anomalous Optical Dispersion of Graphene: Complex Refractive Index Measured by Picometrology," Opt. Express 16, 22105-22112 (2008).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code