Responsive image
博碩士論文 etd-0907115-121109 詳細資訊
Title page for etd-0907115-121109
論文名稱
Title
觸控薄膜適用於延伸閘極酸鹼值感測器之研究
Research on Extended-Gate FET pH Sensors Utilizing Touch Panel Film as the Sensing Layer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-10-02
繳交日期
Date of Submission
2015-10-07
關鍵字
Keywords
氫離子、觸控薄膜、延伸閘極場效電晶體、捲對捲濺鍍製程、銦錫氧化物、緩衝能力、離子干擾
ITO, Roll-to-Roll Sputtering, Extended-Gate FET, Ions Interference, Touch Panel Film, Hydrogen Ions, Buffer Capacity
統計
Statistics
本論文已被瀏覽 5697 次,被下載 123
The thesis/dissertation has been browsed 5697 times, has been downloaded 123 times.
中文摘要
本研究提出高C/P值(成本/效能)的酸鹼值感測器開發與特性研究,以延伸閘極場效電晶體(Extended-Gate Field Effect Transistor)作為感測架構,以觸控薄膜(Touch Panel Film)作為氫離子的感測元件,展現出高效能的感測特性。採用工業用捲對捲濺鍍(Roll to Roll Sputtering)製程進行觸控薄膜研製,在品質上不僅具備高均勻性及可靠度,更具備低製造成本優勢,非常適合用於現場快速及生化領域拋棄式檢測應用。觸控薄膜使用聚對苯二甲酸乙酯(PET)為基材,於基材表面上沉積多層的薄膜(銦錫氧化物/二氧化矽/五氧化二鈮),多層膜設計主要考量光學匹配性及提升層膜間附著力,研製的觸控薄膜厚度約0.2 μm,導入快速插拔設計,將感測器與MOS-FET元件快速的連接換。觸控薄膜上層的銦錫氧化物作為感測層,與氫離子具備很強的鍵結能力,以Nernst方程式評估感測性能,在pH值範圍3〜13,靈敏度為59.2 mV/pH,具備良好線性度R2 = 0.9938,與理想Nernst靈敏度相當一致,也具備快速響應能力(〜1秒),高重現性(變異係數〜2%)與長時間穩定性(變異係數〜1%)。推導出感測器的緩衝能力達7.5×1018~1019 (groups/m2)與理論值一致,單位面積附著淨電荷數與表面鍵結點數的比值(0.8% /ΔpH)優於高靈敏度的IS-FET Ta2O5感測器(0.7% /ΔpH)。TPF感測器在溶液約pH 9、10之間輸出0電位,此時溶液中的氫離子數已遠低於氫氧離子,顯示TPF感測器對氫離子有很強的鍵結能力。溶液中除了氫離子,也含有許多其他正、負離子,針對常見的鉀、鈉離子(K+,Na+)的影響進行探討,干擾離子在鹼性溶液中的影響比酸性溶液中明顯,感測器的靈敏度降低至45.3 mV/pH,仍具有高線性度(R2 = 0.9962)。感測面積在128〜800 mm2,都具有高線性度,靈敏度為42.1~59.2 mV/pH,由於感測器省略封裝處理的設計,使得面積大小對靈敏度有一定的影響。後續的研究,將利用觸控薄膜具備可撓性與成本優勢,朝多感測功能方向發展,應用在穿戴式與拋棄式的感測場域。
Abstract
This study presents the research and development of properties with high C/P value of pH sensors which were developed under the EG-FET utilizing industrial-grade touch panel film (TPF) as the gate sensing element. The mass production touch panel films have high quality and reliability such that the developed sensors are ideal for on-site and biochemical disposable applications. Based on PET substrate, multilayer films (ITO / SiO2 / Nb2O5) were sequential sputtered by utilizing roll-to-roll sputtering process and the thickness of the developed touch panel film was about 0.2 μm. The TPF sensor is simply connected to a MOS-FET via a plug-in slot such that the developed pH sensor is easy to be replaced in seconds. Theoretical Nernst equation is adopted to evaluate the sensing performance of the developed sensor which shows high sensitivity of 59.2 mV/pH in pH 3 to 13 with good linearity of R2 = 0.9948. The developed sensor also shows excellent performance including ultra-fast response (~1 sec), good repeatability (C.V. ~ 2%) and stability (C.V. ~1%). The buffer capacity7.5×1018~1019 (groups/m2) shows consistent with the theoretical results and the ratio of net charge ions over site-binding groups per uint sensing area (0.8% /ΔpH) is superior than the IS-FET Ta2O5 sensor(0.7% /ΔpH). The potassium, sodium cations (K+, Na+) used for evaluation of the performance interference showed the potential output changes were more obvious in base than in acid solutions resulting lower sensitivity of 45.3 mV/pH (R2 = 0.9962). The performance of the sensing area range 128 ~800 mm2 were evaluated that the responses showed good linearity and the sensitivity range 42.1~59.2 mV/pH. Based on TPF, multi-function sensor is expected to develop for wearable and disposable applications.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
表目錄 vii
圖目錄 viii
符號表 xi
簡寫表 xiii
第一章 緒論 1
1.1 前言 1
1.2薄膜感測器(Thin Film Sensor) 3
1.3 電化學氫離子感測器(Electro-Chemical pH Sensor) 7
1.4 固態電子氫離子感測器(Solid-State IS-FET pH Sensor) 10
1.5 延伸閘極場效電晶體感測器(EG-FET sensor) 15
1.6酵素型場效電晶體感測器(Enzyme Based EN-FET sensor) 17
1.7觸控薄膜應用 19
1.8 動機與目的 22
1.9論文架構 23
第二章 pH EG-FET分析模型與原理 25
2-1電雙層分析模型(Electrical Double Layer) 25
2.2表面鍵結模型(Site-Binding Model) 29
2.3 Nernst方程式 33
2.4 MOS-FET量測模式 34
第三章 觸控薄膜製備與實驗方法 36
3.1觸控薄膜結構與材料 36
3.2觸控薄膜捲對捲濺鍍設備 37
3.3觸控薄膜製程 40
3.4 Ta2O5感測薄膜特性與製程 44
3.5 pH特性量測實驗設計 46
第四章 結果與討論 49
4.1 TPF的電性分析 49
4.2靈敏度特性分析 52
4.3暫態反應特性分析 60
4.4長時間穩定性量測 63
4.5重複性感測能力 67
4.6抗外部離子干擾感測能力 71
4.7感測面積對感測能力的影響 77
第五章 結論及未來展望 81
5.1 結論 81
5.2 未來研究方向 84
參考文獻 85
自述 91
參考文獻 References
參考文獻
[1] M. H. Banna, H. Najjaran, R. Sadiq, S. A. Imran, M. J. Rodriguez, and M. Hoorfar, "Miniaturized water quality monitoring pH and conductivity sensors," Sensors and Actuators B: Chemical, vol. 193, pp. 434-441, 2014.
[2] V. M. C. Rérolle, C. F. A. Floquet, M. C. Mowlem, D. P. Connelly, E. P. Achterberg, and R. R. G. J. Bellerby, "Seawater-pH measurements for ocean-acidification observations," TrAC Trends in Analytical Chemistry, vol. 40, pp. 146-157, 2012.
[3] C. Bohnke, H. Duroy, and J. L. Fourquet, "pH sensors with lithium lanthanum titanate sensitive material: applications in food industry," Sensors and Actuators B: Chemical, vol. 89, pp. 240-247, 2003.
[4] S. A. Grant and R. S. Glass, "A sol–gel based fiber optic sensor for local blood pH measurements," Sensors and Actuators B: Chemical, vol. 45, pp. 35-42, 1997.
[5] S. Goldstein, J. Peterson, and R. Fitzgerald, "A miniature fiber optic pH sensor for physiological use," Journal of Biomechanical Engineering, vol. 102, pp. 141-146, 1980.
[6] T. Takeuchi, "Oxygen sensors," Sensors and Actuators, vol. 14, pp. 109-124, 1988.
[7] R. Ramamoorthy, P. Dutta, and S. Akbar, "Oxygen sensors: materials, methods, designs and applications," Journal of Materials Science, vol. 38, pp. 4271-4282, 2003.
[8] J. Riegel, H. Neumann, and H.-M. Wiedenmann, "Exhaust gas sensors for automotive emission control," Solid State Ionics, vol. 152, pp. 783-800, 2002.
[9] P. Krebs and A. Grisel, "A low power integrated catalytic gas sensor," Sensors and Actuators B: Chemical, vol. 13, pp. 155-158, 1993.
[10] T. Suzuki, K. Kunihara, M. Kobayashi, S. Tabata, K. Higaki, and H. Ohnishi, "A micromachined gas sensor based on a catalytic thick film/SnO 2 thin film bilayer and thin film heater: Part 1: CH4 sensing," Sensors and Actuators B: Chemical, vol. 109, pp. 185-189, 2005.
[11] M. Matsumiya, W. Shin, N. Izu, and N. Murayama, "Nano-structured thin-film Pt catalyst for thermoelectric hydrogen gas sensor," Sensors and Actuators B: Chemical, vol. 93, pp. 309-315, 2003.
[12] K. D. Mitzner, J. Sternhagen, and D. W. Galipeau, "Development of a micromachined hazardous gas sensor array," Sensors and Actuators B: Chemical, vol. 93, pp. 92-99, 2003.
[13] I. Elmi, S. Zampolli, E. Cozzani, F. Mancarella, and G. Cardinali, "Development of ultra-low-power consumption MOX sensors with ppb-level VOC detection capabilities for emerging applications," Sensors and Actuators B: Chemical, vol. 135, pp. 342-351, 2008.
[14] H. T. Nagle, R. Gutierrez-Osuna, and S. S. Schiffman, "The how and why of electronic noses," Spectrum, IEEE, vol. 35, pp. 22-31, 1998.
[15] H. Bai and G. Shi, "Gas sensors based on conducting polymers," Sensors, vol. 7, pp. 267-307, 2007.
[16] V. Demarne and A. Grisel, "An integrated low-power thin-film CO gas sensor on silicon," Sensors and Actuators, vol. 13, pp. 301-313, 1988.
[17] J. Chang, H. Kuo, I. Leu, and M. Hon, "The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor," Sensors and Actuators B: Chemical, vol. 84, pp. 258-264, 2002.
[18] I. A. Al-Homoudi, J. Thakur, R. Naik, G. Auner, and G. Newaz, "Anatase TiO 2 films based CO gas sensor: film thickness, substrate and temperature effects," Applied surface science, vol. 253, pp. 8607-8614, 2007.
[19] M. Penza, M. Tagliente, L. Mirenghi, C. Gerardi, C. Martucci, and G. Cassano, "Tungsten trioxide (WO 3) sputtered thin films for a NO x gas sensor," Sensors and Actuators B: Chemical, vol. 50, pp. 9-18, 1998.
[20] M. Ali, C. Y. Wang, C.-C. Röhlig, V. Cimalla, T. Stauden, and O. Ambacher, "NO x sensing properties of In 2 O 3 thin films grown by MOCVD," Sensors and Actuators B: Chemical, vol. 129, pp. 467-472, 2008.
[21] N. Miura, J. Hisamoto, N. Yamazoe, S. Kuwata, and J. Salardenne, "Solid-state oxygen sensor using sputtered LaF3 film," Sensors and Actuators, vol. 16, pp. 301-310, 1989.
[22] R. d. C. S. Luz, F. S. Damos, A. A. Tanaka, and L. T. Kubota, "Dissolved oxygen sensor based on cobalt tetrasulphonated phthalocyanine immobilized in poly-l-lysine film onto glassy carbon electrode," Sensors and Actuators B: Chemical, vol. 114, pp. 1019-1027, 2006.
[23] B.-K. Sohn and C.-S. Kim, "A new pH-ISFET based dissolved oxygen sensor by employing electrolysis of oxygen," Sensors and Actuators B: Chemical, vol. 34, pp. 435-440, 1996.
[24] C. McDonagh, A. Shields, A. McEvoy, B. MacCraith, and J. Gouin, "Optical sol-gel-based dissolved oxygen sensor: progress towards a commercial instrument," Journal of Sol-gel Science and Technology, vol. 13, pp. 207-211, 1998.
[25] R. Gillanders, M. Tedford, P. Crilly, and R. Bailey, "Thin film dissolved oxygen sensor based on platinum octaethylporphyrin encapsulated in an elastic fluorinated polymer," Analytica Chimica Acta, vol. 502, pp. 1-6, 2004.
[26] E. Bakker and E. Pretsch, "Peer Reviewed: The new wave of ion-selective electrodes," Analytical Chemistry, vol. 74, pp. 420 A-426 A, 2002.
[27] W. H. B. a. J. Bardeen, "Surface Properties of Germanium," Bell System Technical Journal, vol. 32: 1-41, 1953.
[28] J. Bardeen and S. R. Morrison, "Surface barriers and surface conductance," Physica, vol. 20, pp. 873–884, 1954.
[29] P. Bergveld, "Development of an ion-sensitive solid-state device for neurophysiological measurements," IEEE Trans Biomed Engineering, vol. 17, pp. 70-1, Jan 1970.
[30] P. Bergveld, "ISFET, theory and practice," in IEEE Sensor Conference, Toronto, 2003, pp. 1-26.
[31] M.-N. Niu, X.-F. Ding, and Q. Y. Tong, "Effect of two types of surface sites on the characteristics of Si 3 N 4-gate pH-ISFET's," in Semiconductor Electronics, 1996. ICSE'96. Proceedings., 1996 IEEE International Conference on, 1996, pp. 189-193.
[32] D. L. Harame, L. J. Bousse, J. D. Shott, and J. D. Meindl, "Ion-sensing devices with silicon nitride and borosilicate glass insulators," Electron Devices, IEEE Transactions on, vol. 34, pp. 1700-1707, 1987.
[33] S. Jamasb, S. Collins, and R. L. Smith, "A physical model for drift in pH ISFETs," Sensors and Actuators B: Chemical, vol. 49, pp. 146-155, 1998.
[34] H.-K. Liao, L.-L. Chi, J.-C. Chou, W.-Y. Chung, T.-P. Sun, and S.-K. Hsiung, "Study on pH pzc and surface potential of tin oxide gate ISFET," Materials Chemistry and Physics, vol. 59, pp. 6-11, 1999.
[35] K. Izutsu and H. Yamamoto, "Response of an iridium oxide pH-sensor in nonaqueous solutions. Comparison with other pH-sensors," Analytical Sciences, vol. 12, pp. 905-909, 1996.
[36] D.-H. Kwon, B.-W. Cho, C.-S. Kim, and B.-K. Sohn, "Effects of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET," Sensors and Actuators B: Chemical, vol. 34, pp. 441-445, 1996.
[37] G. Steinhoff, M. Hermann, W. Schaff, L. Eastman, M. Stutzmann, and M. Eickhoff, "pH response of GaN surfaces and its application for pH-sensitive field-effect transistors," Applied Physics Letters, vol. 83, pp. 177-179, 2003.
[38] Z. Baccar, N. Jaffrezic-Renault, C. Martelet, H. Jaffrezic, G. Marest, and A. Plantier, "Sodium microsensors based on ISFET/REFET prepared through an ion-implantation process fully compatible with a standard silicon technology," Sensors and Actuators B: Chemical, vol. 32, pp. 101-105, 1996.
[39] S. D. Moss, J. Janata, and C. C. Johnson, "Potassium ion-sensitive field effect transistor," Analytical Chemistry, vol. 47, pp. 2238-2243, 1975.
[40] A. Bratov, N. Abramova, C. Domı́nguez, and A. Baldi, "Ion-selective field effect transistor (ISFET)-based calcium ion sensor with photocured polyurethane membrane suitable for ionised calcium determination in milk," Analytica Chimica Acta, vol. 408, pp. 57-64, 2000.
[41] C. Jimenez-Jorquera, J. Orozco, and A. Baldi, "ISFET based microsensors for environmental monitoring," Sensors (Basel), vol. 10, pp. 61-83, 2010.
[42] L. J. Blum and P. R. Coulet, "Biosensor principles and applications," 1991.
[43] A. Poghossian, "Method of fabrication of ISFET-based biosensors on an Si–SiO 2–Si structure," Sensors and Actuators B: Chemical, vol. 44, pp. 361-364, 1997.
[44] I. Lauks, P. Chan, and D. Babic, "The extended gate chemically sensitive field effect transistor as multi-species microprobe," Sensors and Actuators, vol. 4, pp. 291-298, 1983.
[45] L.-T. Yin, J.-C. Chou, W.-Y. Chung, T.-P. Sun, and S.-K. Hsiung, "Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate," Sensors and Actuators B: Chemical, vol. 71, pp. 106-111, 2000.
[46] C.-P. Chen, A. Ganguly, C.-Y. Lu, T.-Y. Chen, C.-C. Kuo, R.-S. Chen, et al., "Ultrasensitive in situ label-free DNA detection using a GaN nanowire-based extended-gate field-effect-transistor sensor," Analytical Chemistry, vol. 83, pp. 1938-1943, 2011.
[47] J.-C. Chen, J.-C. Chou, T.-P. Sun, and S.-K. Hsiung, "Portable urea biosensor based on the extended-gate field effect transistor," Sensors and Actuators B: Chemical, vol. 91, pp. 180-186, 2003.
[48] A. Flounders, A. Singh, J. Volponi, S. Carichner, K. Wally, A. Simonian, et al., "Development of sensors for direct detection of organophosphates.: Part II: Sol–gel modified field effect transistor with immobilized organophosphate hydrolase," Biosensors and Bioelectronics, vol. 14, pp. 715-722, 1999.
[49] S. Caras and J. Janata, "Field effect transistor sensitive to penicillin," Analytical Chemistry, vol. 52, pp. 1935-1937, 1980.
[50] A. P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, and N. Jaffrezic-Renault, "Creatinine sensitive biosensor based on ISFETs and creatinine deiminase immobilised in BSA membrane," Talanta, vol. 58, pp. 351-357, 2002.
[51] D. G. Pijanowska and W. Torbicz, "pH-ISFET based urea biosensor," Sensors and Actuators B: Chemical, vol. 44, pp. 370-376, 1997.
[52] S. D. Caras, D. Petelenz, and J. Janata, "pH-based enzyme potentiometric sensors. Part 2. Glucose-sensitive field effect transistor," Analytical Chemistry, vol. 57, pp. 1920-1923, 1985.
[53] A. N. Hendji, N. Jaffrezic-Renault, C. Martelet, P. Clechet, A. Shlu'ga, V. Strikha, et al., "Sensitive detection of pesticides using a differential ISFET-based system with immobilized cholinesterases," Analytica Chimica Acta, vol. 281, pp. 3-11, 1993.
[54] L. Campanella, M. Mascini, G. Palleschi, and M. Tomassetti, "Determination of choline-containing phospholipids in human bile and serum by a new enzyme sensor," Clinica Chimica Acta, vol. 151, pp. 71-83, 1985.
[55] M. Zayats, A. B. Kharitonov, E. Katz, A. F. Bückmann, and I. Willner, "An integrated NAD+-dependent enzyme-functionalized field-effect transistor (ENFET) system: development of a lactate biosensor," Biosensors and Bioelectronics, vol. 15, pp. 671-680, 2000.
[56] M. J. Schöning and A. Poghossian, "Recent advances in biologically sensitive field-effect transistors (BioFETs)," Analyst, vol. 127, pp. 1137-1151, 2002.
[57] J. Liu, L. Liang, G. Li, R. Han, and K. Chen, "H+ ISFET-based biosensor for determination of penicillin G," Biosensors and Bioelectronics, vol. 13, pp. 1023-1028, 1998.
[58] http://www.impulse-corp.co.uk/blogs/touch-screen-technology.htm.
[59] http://www.amtouch.com.tw/projected-capacitive/projected-capacitive-touch-screen/construction-tail-surface-finish/.
[60] P. D. Batista and M. Mulato, "ZnO extended-gate field-effect transistors as pH sensors," Applied Physics Letters, vol. 87, p. 143508, 2005.
[61] H.-H. Li, C.-E. Yang, C.-C. Kei, C.-Y. Su, W.-S. Dai, J.-K. Tseng, et al., "Coaxial-structured ZnO/silicon nanowires extended-gate field-effect transistor as pH sensor," Thin Solid Films, vol. 529, pp. 173-176, 2013.
[62] C.-W. Pan, J.-C. Chou, T.-P. Sun, and S.-K. Hsiung, "Development of the tin oxide pH electrode by the sputtering method," Sensors and Actuators B: Chemical, vol. 108, pp. 863-869, 2005.
[63] C.-H. Kao, H. Chen, L.-T. Kuo, J.-C. Wang, Y.-T. Chen, Y.-C. Chu, et al., "Multi-analyte biosensors on a CF4 plasma treated Nb2O5-based membrane with an extended gate field effect transistor structure," Sensors and Actuators B: Chemical, vol. 194, pp. 419-426, 2014.
[64] W.-D. Huang, H. Cao, S. Deb, M. Chiao, and J. C. Chiao, "A flexible pH sensor based on the iridium oxide sensing film," Sensors and Actuators A: Physical, vol. 169, pp. 1-11, 2011.
[65] Y.-H. Liao and J.-C. Chou, "Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol–gel method," Materials Chemistry and Physics, vol. 114, pp. 542-548, 2009.
[66] D.-H. Kwon, B.-W. Cho, C.-S. Kim, and B.-K. Sohn, "Effects of heat treatment on Ta 2O5 sensing membrane for low drift and high sensitivity pH-ISFET," Sensors and Actuators B: Chemical, vol. 34, pp. 441-445, 1996.
[67] A. Fog and R. P. Buck, "Electronic semiconducting oxides as pH sensors," Sensors and Actuators, vol. 5, pp. 137-146, 1984.
[68] S. Park, H. Boo, Y. Kim, J.-H. Han, H. C. Kim, and T. D. Chung, "pH-sensitive solid-state electrode based on electrodeposited nanoporous platinum," Analytical Chemistry, vol. 77, pp. 7695-7701, 2005.
[69] C.-E. Lue, I. S. Wang, C.-H. Huang, Y.-T. Shiao, H.-C. Wang, C.-M. Yang, et al., "pH sensing reliability of flexible ITO/PET electrodes on EGFETs prepared by a roll-to-roll process," Microelectronics Reliability, vol. 52, pp. 1651-1654, 2012.
[70] J.-L. Chiang, S.-S. Jhan, S.-C. Hsieh, and A.-L. Huang, "Hydrogen ion sensors based on indium tin oxide thin film using radio frequency sputtering system," Thin Solid Films, vol. 517, pp. 4805-4809, 2009.
[71] C.-M. Yang, I. S. Wang, Y.-T. Lin, C.-H. Huang, T.-F. Lu, C.-E. Lue, et al., "Low cost and flexible electrodes with NH3 plasma treatments in extended gate field effect transistors for urea detection," Sensors and Actuators B: Chemical, vol. 187, pp. 274-279, 2013.
[72] C.-W. Lin, H.-I. Chen, T.-Y. Chen, C.-C. Huang, C.-S. Hsu, R.-C. Liu, et al., "On an indium–tin-oxide thin film based ammonia gas sensor," Sensors and Actuators B: Chemical, vol. 160, pp. 1481-1484, 2011.
[73] K. Mitsubayashi, Y. Wakabayashi, S. Tanimoto, D. Murotomi, and T. Endo, "Optical-transparent and flexible glucose sensor with ITO electrode," Biosensors and Bioelectronics, vol. 19, pp. 67-71, 2003.
[74] Y.-S. Shim, H. G. Moon, D. H. Kim, H. W. Jang, C.-Y. Kang, Y. S. Yoon, et al., "Transparent conducting oxide electrodes for novel metal oxide gas sensors," Sensors and Actuators B: Chemical, vol. 160, pp. 357-363, 2011.
[75] J. Lin, W. Qu, and S. Zhang, "Disposable biosensor based on enzyme immobilized on Au-chitosan-modified indium tin oxide electrode with flow injection amperometric analysis," Analytical Biochemistry, vol. 360, pp. 288-93, Jan 15 2007.
[76] https://en.wikipedia.org/wiki/Double_layer_(interfacial).
[77] H. Wang and L. Pilon, "Accurate simulations of electric double layer capacitance of ultramicroelectrodes," The Journal of Physical Chemistry C, vol. 115, pp. 16711-16719, 2011.
[78] D. E. Yates, S. Levine, and T. W. Healy, "Site-binding model of the electrical double layer at the oxide/water interface," Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 70, pp. 1807-1818, 1974.
[79] R. Van Hal, J. Eijkel, and P. Bergveld, "A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters," Sensors and Actuators B: Chemical, vol. 24, pp. 201-205, 1995.
[80] C. D. Fung, P. W. Cheung, and W. H. Ko, "A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor," IEEE Transactions on Electron Devices, vol. 33, pp. 8-18, 1986.
[81] https://en.wikipedia.org/wiki/MOSFET.
[82] Y.-C. Wu, S.-J. Wu, and C.-H. Lin, "High Performance EGFET-based pH Sensor Utilizing Low-cost Industrial-grade Touch Panel Film as the Gate Structure," IEEE Sensors, vol. 15, pp. 6279 – 6286, 2015.
[83] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, "Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films," Thin Solid Films, vol. 326, pp. 72-77, 1998.
[84] H. Morikawa and M. Fujita, "Crystallization and decrease in resistivity on heat treatment of amorphous indium tin oxide thin films prepared by dc magnetron sputtering," Thin Solid Films, vol. 339, pp. 309-313, 1999.
[85] M. Boehme and C. Charton, "Properties of ITO on PET film in dependence on the coating conditions and thermal processing," Surface and Coatings Technology, vol. 200, pp. 932-935, 2005.
[86] Y. Hu, X. Diao, C. Wang, W. Hao, and T. Wang, "Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering," Vacuum, vol. 75, pp. 183-188, 2004.
[87] D. R. Cairns, D. C. Paine, and G. P. Crawford, "The mechanical reliability of sputter-coated indium tin oxide polyester substrates for flexible display and touchscreen applications," in MRS Proceedings, 2001, pp. 24-27.
[88] Y. S. Kim, W. J. Hwang, K. T. Eun, and S.-H. Choa, "Mechanical reliability of transparent conducting IZTO film electrodes for flexible panel displays," Applied Surface Science, vol. 257, pp. 8134-8138, 2011.
[89] J. Lewis, "Material challenge for flexible organic devices," Materials Today, vol. 9, pp. 38-45, 2006.
[90] V. Y. Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, et al., "Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering," Applied Physics Letters, vol. 102, p. 062106, Feb 11 2013.
[91] C. Tao, L. Xu, and J. Guan, "Well-dispersed mesoporous Ta2O5 submicrospheres: Enhanced photocatalytic activity by tuning heating rate at calcination," Chemical Engineering Journal, vol. 229, pp. 371-377, 2013.
[92] A. Hosoki, M. Nishiyama, H. Igawa, A. Seki, Y. Choi, and K. Watanabe, "A surface plasmon resonance hydrogen sensor using Au/Ta2O5/Pd multi-layers on hetero-core optical fiber structures," Sensors and Actuators B: Chemical, vol. 185, pp. 53-58, 2013.
[93] J. Rao, S. Varlamov, J. Park, S. Dligatch, and A. Chtanov, "Optimization of Dielectric-Coated Silver Nanoparticle Films for Plasmonic-Enhanced Light Trapping in Thin Film Silicon Solar Cells," Plasmonics, vol. 8, pp. 785-791, Jun 2013.
[94] A. Hosoki, M. Nishiyama, H. Igawa, A. Seki, Y. Choi, and K. Watanabe, "A surface plasmon resonance hydrogen sensor using Au/Ta2O5/Pd multi-layers on hetero-core optical fiber structures," Sensors and Actuators B-Chemical, vol. 185, pp. 53-58, Aug 2013.
[95] Y.-C. Wu, S.-J. Wu, and C.-H. Lin, "Mass-produced polyethylene-terephthalate film coated with tantalum pentoxide for pH measurement under ISFET detection configuration," Microsystem Technologies, pp. 1-6, 2015.
[96] S. Srinivasan, Fuel cells: from fundamentals to applications: Springer Science & Business media, 2006.
[97] P. Van Der Wal, D. Briand, G. Mondin, S. Jenny, S. Jeanneret, C. Millon, et al., "High-k dielectrics for use as ISFET gate oxides," in Sensors, 2004. Proceedings of IEEE, 2004, pp. 677-680.
[98] N. Nadaud, N. Lequeux, M. Nanot, J. Jove, and T. Roisnel, "Structural studies of tin-doped indium oxide (ITO) and In4Sn3O12," Journal of Solid State Chemistry, vol. 135, pp. 140-148, 1998.
[99] G. Mei-Zhen, R. Job, X. De-Sheng, and W. Fahrner, "Thickness dependence of resistivity and optical reflectance of ITO films," Chinese Physics Letters, vol. 25, pp. 1380-1385, 2008.
[100] J.-L. Lin, Y.-M. Chu, S.-H. Hsaio, Y.-L. Chin, and T.-P. Sun, "Structures of anodized aluminum oxide extended-gate field-effect transistors on pH sensors," Japanese Journal of Applied Physics, vol. 45, pp. 7999-8004, 2006.
[101] R. Kühnhold and H. Ryssel, "Modeling the pH response of silicon nitride ISFET devices," Sensors and Actuators B: Chemical, vol. 68, pp. 307-312, 2000.
[102] M. Chen, Y. Jin, X. Qu, Q. Jin, and J. Zhao, "Electrochemical impedance spectroscopy study of Ta2O5 based EIOS pH sensors in acid environment," Sensors and Actuators B: Chemical, vol. 192, pp. 399-405, 2014.
[103] N. C. S. Vieira, E. G. R. Fernandes, A. A. A. d. Queiroz, F. E. G. Guimarães, and V. Zucolotto, "Indium tin oxide synthesized by a low cost route as SEGFET pH sensor," Materials Research, vol. 16, pp. 1156-1160, 2013.
[104] B. Aydemir, L. Yagmur, and S. Fank, "Hysteresis errors of commonly used sensor materials," Measurement, vol. 43, pp. 792-796, 2010.
[105] L. Bousse, S. Mostarshed, B. van der Schoot, and N. De Rooij, "Comparison of the hysteresis of Ta2O5 and Si3N 4 pH-sensing insulators," Sensors and Actuators B: Chemical, vol. 17, pp. 157-164, 1994.
[106] L.-T. Yin, J.-C. Chou, W.-Y. Chung, T.-P. Sun, and S.-K. Hsiung, "Study of indium tin oxide thin film for separative extended gate ISFET," Materials Chemistry and Physics, vol. 70, pp. 12-16, 2001.
[107] K. G. Kreider, M. J. Tarlov, and J. P. Cline, "Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides," Sensors and Actuators B: Chemical, vol. 28, pp. 167-172, 1995.
[108] T. Katsube, I. Lauks, and J. Zemel, "pH-sensitive sputtered iridium oxide films," Sensors and Actuators, vol. 2, pp. 399-410, 1982.
[109] A. Errachid, J. Bausells, and N. Jaffrezic-Renault, "A simple REFET for pH detection in differential mode," Sensors and Actuators B: Chemical, vol. 60, pp. 43-48, 1999.
[110] P. Hammond, D. Ali, and D. R. Cumming, "Design of a single-chip pH sensor using a conventional 0.6-μm CMOS process," Sensors Journal, IEEE, vol. 4, pp. 706-712, 2004.
[111] 藤本守, 松村裕, and 佐竹典子, "General properties of antimony microelectrode in comparison with glass microelectrode for pH measurement," The Japanese Journal of Physiology, vol. 30, pp. 491-508, 1980.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code