Responsive image
博碩士論文 etd-0908104-145822 詳細資訊
Title page for etd-0908104-145822
論文名稱
Title
雙桑克干涉式光纖水中聽音器之設計與解調
The Design and Demodulation of Fiber-optic Hydrophones Based on Dual Sagnac Interferometers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-12
繳交日期
Date of Submission
2004-09-08
關鍵字
Keywords
麥克遜干涉儀、桑克干涉儀、水中聽音器、解調
Demodulation, Michelson interferometer, Sagnac interferometer, Hydrophone
統計
Statistics
本論文已被瀏覽 5660 次,被下載 2374
The thesis/dissertation has been browsed 5660 times, has been downloaded 2374 times.
中文摘要
由於聲波能在水中做長距離的傳播,使得水中聽音器在水下偵測方面一直扮演著關鍵性的角色。利用干涉儀為基礎的光纖感測器,有極高的靈敏度與大的動態範圍,此外,光纖感測器不需提供電力給感測頭、不受電磁干擾及極佳的多工化能力,使得光纖可以取代傳統的壓電材料來製作水中聽音器。
桑克干涉儀架構因為零光程差的特性,可以採用低同調性光源降低成本,光路佈放容易且可以替換不同感測頭進行比較,不過其靈敏度隨頻率變化且有偏振引起訊號褪變的問題。而結合法拉第旋轉鏡的麥克遜干涉儀架構,靈敏度為定值,更可以解決極化引起訊號褪變的問題,但需採用高同調性光源和昂貴的法拉第旋轉鏡,且光路製作不易,本文主要利用此架構調整所設計的解調電路。
本文設計干涉式水中聽音器,感測頭利用特殊材料封膠作為聲阻抗匹配及水密之用,利用相位載波解調技術來得到待測聲訊號。本論文量測到的結果為:雙桑克架構動態範圍約23 dB,靈敏度為-226 dB re V/1μPa,結合法拉第旋轉鏡的麥克遜架構動態範圍約為25 dB,靈敏度為 -204 dB re V/1μPa。
Abstract
Because the acoustic wave is capable of propagating at a long-distance in water, the hydrophone plays a key role in the underwater acoustic sensing all the time. The hydrophone based on fiber optic interferometry has an extremely high sensitivity and large dynamic range. In addition, the electrically passive, immunity to electromagnetic interference, and multiplexing properties of fiber optic sensor offer great advantages over traditional piezoelectric hydrophone.
Due to the complete path-balance between the two counterpropagating waves, a Sagnac interferometric configuration can employ a low-coherent light source to reduce the cost. This configuration can easily route optical paths and replace sensor heads to compare with each other. But, the sensitivity varying with frequency and the polarization-induced signal fading problem make it unsuitable for applications in need of detecting correct amplitude of signals. The Michelson interferometric configuration with Farady rotator mirror (FRM) has a constant sensitivity and solves the polarization-induced signal fading problem. But, this configuration uses a high-coherent light source and expensive FRMs, and be difficult to route. In this paper, we use the polarization-insensitive Michelson fiber optic sensor to adjust the demodulation circuits we design.
In this paper, we establish the interferometric hydrophones. The fiber optic coil of the sensor head is embedded with the special materials in order to acoustic impedance matching and waterproofing. We employ phase generated carrier demodulation technology to get the acoustic signal of interest from the output of the interferometer. In our experiment, the dual Sagnac configuration has a dynamic range of 23 dB and a sensitivity of -226 dB re V/1uPa, the Michelson configuration with FRMs has a dynamic range of 25 dB and a sensitivity of -204 dB re V/1uPa.
目次 Table of Contents
中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
符號表 xi
第一章 簡介 1
1.1 研究背景與文獻回顧 1
1.2 研究動機 3
1.3 論文架構 4
第二章 感測系統之設計 5
2.1感測原理 5
2.1.1 光纖感測原理 5
2.1.2 干涉現象 7
2.1.3 干涉儀 8
2.2 感測系統之架構 9
2.2.1 光源單元 9
2.2.1.1 ASE寬頻光源 9
2.2.1.2 雷射光源 10
2.2.1.3 光衰減器 10
2.2.1.4 光隔離器 10
2.2.2 感測單元 11
2.2.2.1 單模光纖 11
2.2.2.2 2×2光纖耦合器 12
2.2.2.3 法拉第旋轉鏡 13
2.2.2.4 偏振控制器 14
2.2.3 訊號處理單元 15
2.2.3.1 檢光器 15
2.2.3.2 PZT相位調制器 15
2.3 感測系統之數學分析 17
2.3.1 偏振狀態分析 17
2.3.1.1 光纖之瓊斯矩陣 17
2.3.1.2 2×2耦合器之瓊斯矩陣 18
2.3.1.3 法拉第旋轉鏡之瓊斯矩陣 18
2.3.1.4 雙桑克干涉儀之瓊斯矩陣 19
2.3.1.5 結合FRM的邁克遜干涉儀之瓊斯矩陣 20
2.3.2 干涉訊號之分析 21
2.3.2.1 雙桑克干涉儀之干涉訊號 21
2.3.2.2 結合FRM的邁克遜干涉儀之干涉訊號 24
第三章 解調電路之設計 26
3.1 調變與解調 26
3.2 解調方式 27
3.2.1 被動式零差(HOM)解調 27
3.2.2 主動式零差(HOM)解調 29
3.2.3 外差(HET)與合成外差(SHET)解調 30
3.3 PGC解調電路之設計 32
3.3.1 PGC解調原理 32
3.3.2 PGC解調電路 34
3.3.2.1 非反相放大器 34
3.3.2.2 乘法器(倍頻器) 35
3.3.2.3 低通濾波器 35
3.3.2.4 微分器 36
3.3.2.5 減法器 36
3.3.2.6 積分器 36
3.3.3 PGC解調電路模擬 37
第四章 實驗與結果討論 38
4.1 基礎實驗 39
4.1.1 2×2光纖耦合器之量測 39
4.1.2 光循環器之量測 40
4.1.3 法拉第旋轉鏡之量測 40
4.1.4 PZT之量測 40
4.2 水中聽音器之實驗 42
4.2.1 雙桑克水中聽音器空氣中之量測 43
4.2.2 雙桑克水中聽音器水中之量測 44
4.2.3 麥克遜水中聽音器水中之量測 47
第五章 結論與未來展望 49
5.1 結論 49
5.2 未來展望 50
參考文獻 51
附圖 56
附表 99
附錄A 107
附錄B 108
附錄C 109
附錄D 110
附錄E 111
附錄F 112
附錄G 112
附錄H 113
附錄I 114
中英文對照表 116
作者簡歷 120
參考文獻 References
1. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron., vol. QE-18, no. 4, pp. 626-665, 1982.
2. B. Lee, “Review of the present status of optical fiber sensors,” J. Optical Fiber Technol., vol. 9, pp. 57-79, 2003.
3. J. A. Bucaro, H. D. Dardy, and E. Carome, “Fiber optic hydrophone,” J. Acoust. Soc. Am., vol. 62, no. 5, pp. 1302-1304, 1977.
4. J. H. Cole, C. Kirkendall, A. Dandridge, G. Cogdell, and T. G. Giallorenzi, “Twenty-five years of interferometric fiber optic acoustic sensors at Naval Research Laboratory,” Available from: http://www.washacadsci.org/Website/Papers/Cole.pdf.
5. 洪碩鍵, “水下光纖聲感應監聽系統簡介,” 海下技術季刊, 第8卷第2期, pp.17-19, 民國87年6月。
6. P. Nash, “Review of interferometric optical fibre hydrophone technology,” IEE Proc.-Radar, Sonar, Navig., vol. 143, no. 3, pp. 204-209, 1996.
7. A. B. Tveten, A. M. Yurek, Y. Y. Chao, and A. Dandridge, “A high frequency fiber optic hydrophone,” in Proc. OFS’92, pp. 350-353, 1992.
8. E. Udd, “Fiber-optic acoustic sensor based on the Sagnac interferometer,” Proc. Soc. Photo-Opt. Instrum. Eng., vol. 425, pp. 90-95, 1983.
9. K. Kråkenes and K. Bløtekjaer, “Effect of laser phase noise in Sagnac interferometers,” IEEE J. Lightwave Technol., vol. 11, no. 4, pp. 643-653, 1993.
10. J. A. Bucaro, N. Lagakos, J. H. Cole, and T. G. Giallorenzi, “Fiber optic acoustic transduction,” in Physical Acoustics, W. P. Mason and R. N. Thurston, Ed., vol. 16, ch. 7, pp. 385-457, Academic Press, New York, 1982.
11. J. A. Bucaro, B. H. Houston, and E. G. Williams, “Fiber-optic air-backed hydrophone transduction mechanisms,” J. Acoust. Soc. Am., vol. 89, no. 1, pp. 451-453, 1991.
12. N. Lagakos and J. A. Bucaro, “Linearly configured embedded fiber-optic acoustic sensor,” IEEE J. Lightwave Technol., vol. 11, no. 4, pp. 639-642, 1993.
13. N. Lagaks, J. A. Bucaro, P. E. Ehrenfeuchter, and B. H. Houston, “Fiber-emmbedded mandrel-stiffened planar acoustic sensor,” J. Acoust. Soc. Am., vol. 98, no. 3, pp. 1618-1622, 1995.
14. J. A. Bucaro, N. Lagakos, B. H. Houston, and A. Dandridge, “High frequency response of fiber-optic planar acoustic sensors,” IEEE J. Lightwave Technol., vol. 9, no. 9, pp. 1195-1199, 1991.
15. N. Zeng, C. Shi, D. Wang, M. Zhang, and Y. Liao, “Diaphragm-type fiber-optic interferometric acoustic sensor,” Opt. Eng., vol. 42, no. 9, pp. 2558-2562, 2003.
16. A. Dandridge and G. B. Cogdell, “Fiber optic sensors for Navy applications,” IEEE LCS, vol. 2, pp. 81-89, 1991.
17. G. A. Ransford and J. W. Ioup, “Locating and determining the orientation of underwater research equipment: Acoustic range and range rate data,” IEEE J. Oceanic Eng., vol. 12, pp. 524-534, 1987.
18. Youngchol Choi, Jong-won Park, Sea-Moon Kim, and Yong-kon Lim, “A phase coherent all-digital transmitter and receiver for underwater acoustic communication systems,” in Proc. 35th SSST, pp. 79-83, 2003.
19. S. Bradley, S. Addison, I. G. Priede, M. Collins, and P. M. Bagley, “A deep-ocean fish tracking system using code-activated transponders and hydrophone array,” in Proc. 7th Int. Conf. on Electronic Engineering in Oceanography, pp. 34-38, 1997.
20. A. N. Moore and R. V. Stephens, “Deep water current profile measurements for operational support and design statistics,” in Proc. IEEE 5th Working Conf. on Current Measurement, pp. 90-94, 1995.
21. K. Hirata, M. Aoyagi, H. Mikada, and K. Kawaguchi et al., “Real-time geophysical measurements on the deep seafloor using submarine cable in the southern Kurile subduction zone,” IEEE J. Oceanic Eng., vol. 27, no. 2, pp. 170-181, 2002.
22. A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization- insensitive fiber optic Michelson interferometer,” Electron. Lett., vol. 27, no. 6, pp. 518-520, 1991.
23. 施松村, 無極化感受性邁克遜干涉式聲感應器系統之分析, pp. 50-12, 國立中山大學, 電機工程學系博士論文, 高雄市, 民國86年5月。
24. C. D. Butter and G. B. Hocker, “Fiber optic strain gauge,” Appl. Opt., vol. 17, no. 18, pp. 2867-2869, 1978.
25. 孫慶成, 光電概論, pp. 2-31~2-38, 全華, 台北市, 民國87年。
26. A. Yariv, Optical Electronics in Modern Communications, 4rd ed., pp. 462-463, Oxford University Press, New York, 1995.
27. A. Yariv, Optical Electronics in Modern Communications, 4rd ed., pp. 27-30, Oxford University Press, New York, 1995.
28. K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology, vol. 2, pp. 168-170, Chapman & Hall, London, 1998.
29. H. C. Lefever, “Single-mode fibre fractional wave devices and polarization controllers,” Electron. Lett., vol. 16, no. 20, pp. 778-780, 1991.
30. W. W. Lin, S. T. Shih, M. H. Chen, and S. C. Huang, “The transfer functions of PZT phase modulators in optical fiber sensors,” Proc. Natl. Sci. Counc. ROC(A)., vol. 18, no. 6, pp. 570-575, 1994.
31. E. Brinkmeyer, “Forward-backward transmission in birefringent single-mode fibers: interpretation of polarization-sensitive measurements,” Opt. Lett., vol. 6, pp. 575-577, 1981.
32. A. Yariv, “Operator algebra for propagation problems involving phase conjugation and nonreciprocal elements,” Appl. Opt., vol. 26, pp. 4538-4540, 1987.
33. A. Yu and A. S. Siddigui, “Systematic method for the analysis of optical fibre circuits,” IEE Proc.-Optoelectron., vol. 142, pp. 165-175, 1995.
34. Edited by E. Udd, Fiber Optic Sensors, pp. 280-290, John Wiley and Sons Inc., New York, 1991.
35. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron., vol. QE-18, no. 10, pp. 1647– 1653, 1982.
36. K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometry using (3×3) fiber directional couplers,” Appl. Phys. Lett., vol. 41, pp. 616-620, 1982.
37. D. A. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Opt., vol. 19, no. 17, pp. 2926-2929, 1980.
38. J. A. Bucaro and J. H. Cole, “Acousto-optics sensor development,” Proc. EASCON 1979, IEEE Pub. 79CH1476-1 AES, pp. 572-580, 1979.
39. J. H. Cole, B. A. Danver, and J. A. Bucaro, “Synthetic-heterodyne interferometric demodulation,” IEEE Trans. Microwave Theory Tech., vol. MTT-30, no. 4, pp. 540-543, 1982.
40. 盧明智、黃敏祥著, OP Amp應用+實驗模擬(含filter、A/D、D/A、VCO、V/F、F/V), pp. 525-531, 全華, 台北市, 民國83年9月。
41. 許仕、林鴻銘、楊慶忠編撰, 基礎光通訊實習教材, pp. 7-61, Available from: http://fiber.ee.ncku.edu.tw/downloadfile/Practice.htm
42. EXFO Return Loss Meter IQS-3200 User Guide, pp.27-44, EXFO Electro-Optical Engineering Inc., 2002.
43. 陳茂雄, 林武文, “光纖水下聲波感測器之研製(二),” 行政院國家科學委員會專題研究計畫成果發表, pp.10-16, 民國83年8月。
44. 鄧盛東, “淺談水下量測電聲換能器互易校正法,” 海下技術季刊, 第3卷第2期, pp.14-17, 民國82年6月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code