Responsive image
博碩士論文 etd-0908106-161555 詳細資訊
Title page for etd-0908106-161555
論文名稱
Title
海膽啃食壓力、溫度與營養鹽對台灣西南部小琉球嶼海鱺海洋箱網養殖海域大型海藻豐度與群聚之影響
Influences of sea urchin grazing effect, temperature and nutrient on benthic macroalgal assemblage abundance and structure in marine cobia (Rachycentron canadum) cage farming areas in Hsiao-Lu-Chiao Island in southwestern Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-24
繳交日期
Date of Submission
2006-09-08
關鍵字
Keywords
非生物因子、降雨、豐度、群聚、箱網養殖、食物喜好、海膽、內臟內含物分析、草食壓力排除、草食壓力、時空變動、生長照度、生長溫度、季節變化、生物因子、台灣、大型海藻、小琉球
herbivore pressure, herbivore exclusion, Hsiao-Lu-Chiao island, macroalgal, nutrient, seasonal change, sea urchin, spatio-temporal variations, abundance, precipitation, Taiwan, abiotic factor, biotic factor, cage farming, growth irradiance, gut contents, food preference, community, growth temperature
統計
Statistics
本論文已被瀏覽 5685 次,被下載 0
The thesis/dissertation has been browsed 5685 times, has been downloaded 0 times.
中文摘要
本研究探討台灣西南部小琉球箱網養殖區與非箱網養殖區大型海藻豐度與群聚是否有差異及造成差異的因子。實驗進行分為四大部分:1、大型海藻豐度與群聚之季節、地點 (箱網區與非箱網區)、深度 (5、10 m深) 之變化:季節因子為2004年9月、2005年1月及4月,地點因子為由北而南進行箱網區三個之採樣點 (北端的FFA1、中端的FFA2及南端的FFA3) 和非箱網區一個採樣點 (NFFA),深度為5及10 m水深;2、非生物及生物因子與大型海藻群聚時空變動之關係,非生物因子包括月絕對最高氣溫、月平均氣溫、月絕對最低氣溫、月累積降雨量、月累積日射量、海水溫度、光衰減係數、海水擾動及營養鹽 (NO3-、NO2-、NH4+、SRP、DON及DOP),生物因子為海膽,利用無母數多因子統計分析進行相關比對;3、驗證影響大型海藻豐度及群聚之因子:(1)、生長溫度分析:比較不同藻種的生長溫度範圍,並與野外溫度之地點、季節及深度變化比較;(2)、光照強度分析:比較不同藻種的生長光照強度範圍,並與野外溫光照強度之地點、季節及深度變化比較;4.草食壓力:(1)、海膽豐度與群聚之季節季節、地點與深度變化;(2)、海膽食物喜好及胃內含物分析;(3)、草食壓力排除試驗。
大型海藻 (覆蓋率、單位面積濕重、單位面積乾重、種類數目、歧異度 (H’)及均勻度 (J’)) 在1月較低且在箱網區FFA1的5 m及10 m 與FFA2 的10 m處較低而FFA2、FFA3及NFFA的5 m處較高。優勢曲線圖 (k-dominance curve)、分群樹狀圖 (clustering analysis) 及 1-way ANOSIM分析顯示大型海藻群聚在地點 (Global R = 0.207) 、季節 (Global R = 0.168) 及深度 (Global R = 0.153)皆有顯著差異,5 m及10 m深度分別以2-way crossed ANOSIM分析季節及地點大型海藻群聚差異,結果顯示兩個深度均有季節間及地點間群聚差異。SIMPER分析顯示角網藻 (Ceratodictyon spongiosum) 是造成群聚季節及地點差異的主要藻種,主要出現在1月的FFA1及FFA2。BVSTEP (BIO-ENV stepwise procedure) 分析指出造成大型海藻群聚時空差異的因子為:海膽密度、溫度、營養鹽 (NO3-, DON, DOP) 及月累積降雨量。此一相關以5 m 最明顯。箱網養殖區FFA1及FFA2群聚受海膽啃食、溫度及DON影響,水深5 m的大型海藻覆蓋率與海膽密度呈現負相關而水深10 m處無此相關存在。海膽分佈於箱網養殖區北及中端。所以,推測FFA1及FFA2屬於高啃食壓力區域。海膽內臟內含物鏡檢及食性喜好性測試指出長枝沙菜 (Hypnea charoides) 及傘房龍鬚菜 (Gracilaria coronopifolia) 為海膽最喜好種類,與在高啃食壓力區域草食性動物隔離後長枝沙菜及傘房龍鬚菜生物量增加相符,證實海膽控制大型海藻豐度及組成。與其他點比較,角網藻為主群聚發生在1月FFA1及FFA2,與此處’低DOP/高DON’相符。箱網養殖區FFA3群聚受溫度及’低氮(NO3-)/高磷 (DOP)’影響,FFA3營養鹽狀態在季節間轉變由 ’低氮(NO3-)/高磷 (DOP)’ 轉換為 ’高氮/低磷’ 再轉回 ’低氮/高磷’,與’小葉仙掌鈣藻及布氏藻’為優勢藻種組成轉換為’脆叉節藻、小珊瑚藻及乳節藻’ 優勢藻種組成可再轉回’小葉仙掌鈣藻及布氏藻’ 組成趨勢相符。非箱網養殖區NFFA群聚受溫度及月累積降雨量影響,月累積降雨量9月高於1月及4月,與海膽啃食壓力低及較低營養鹽的NFFA大型海藻群聚季節變動相符,9月以肉質狀藻類 (布氏藻及傘房龍鬚菜) 為主,1月及4月以鈣化藻類 (小葉仙掌鈣藻) 為主。優勢藻種及傘房龍鬚菜生長溫度範圍及最適溫度差異與其季節變化相符,所以推測溫度造成大型海藻豐度及群聚季節變化。本研究結論為台灣西南部小琉球底棲大型海藻豐度及群聚受到季節性溫度變化調控而草食性動物及營養鹽參與箱網養殖區大型海藻豐度及群聚的調控,降雨則是非箱網養殖區大型海藻豐度及群聚的影響因子。
Abstract
Field and laboratory studies were used to elucidate the factors affecting temporal and spatial variations of species abundance and structure of macroalgal assemblage and environmental variables between fish farming (FFA) and non-fish farming (NFFA) areas in Hsiao-Lu-Chiao island, a coral island in southwestern Taiwan. Four experiments have been approached: 1. field surveys of macroalgal assemblage structure on 5-m and 10-m depth at 3 sampling sites at FFA (FFA1, FFA2 and FFA3) and 1 sampling site at NFFA from September 2004, January 2005 and April 2005; 2.the relationship between abiotic (monthly maximum air temperature, monthly minimum air temperature, monthly mean air temperature, monthly cumulative precipitation, monthly cumulative irradiance, seawater temperature, light extinction coefficient, water motion, and nutrient (NO3-, NO2-, NH4+, SRP, DON, and DOP) and biotic (seaurchin density) factors and spatio-temporal variations in macroalgal structures analyzed by non-parametric multivariate model; 3. Factors affecting macroalgal abundance and structure: (1). Comparison of growth temperature ranges in different species to field temperature fluctuation; (2).Comparison of growth irradiance ranges in different species to field irradiance fluctuation; 4.Herbivore pressure: (1). Spatio-temporal variations of sea urchin abundance and structure of assemblage; (2). Gut contents and food preference of sea urchin experiment; (3). Herbivore exclusion experiment.
Macroalgal %cover, biomass, species richness, diversity (H’) and evenness (J’) showed temporal and spatial variations, low values in January 2005 and also low values in the 5 m- and 10 m-depth areas of FFA1 and the 10 m-depth areas of FFA2. The data of k-dominance curve, hierarchical cluster and ANOSIM tests indicate that macroalgal assemblage is different between 4 sampling sites, between 2 depths and between 3 seasons. Ceratodictyon spongiosum is the most important species that separates September and January assemblages from April assemblage and separates the FFA1 and FFA2 assemblages from the FFA3 and NFFA assemblages. BVSTEP analysis shows that nutrients (NO3-, DON, DOP), temperature, monthly cumulative precipitation, and sea urchin density are the factors corresponding to variations of macroalgal assemblages, this correlation is more significant for 5 m-depth assemblage. Fish farming area FFA1and FFA2 assemblage are affect by sea urchin density, temperature and DON. Sea urchin influnces macroalgal abundance and assemblage structure in FFA1 and FFA2. Macroalgal %cover in 5 m-depth area shows a reversal relationship with sea urchin density; however, this relationship is not observed for 10 m-depth area. FFA1 and FFA2 are belong to high grazing pressure sites as indicated by high sea urchin density and exclusion experiment. Sea urchin gut contents and feeding preference test show that sea urchin has strong food selectivity with Hypnea charoides and Gracilaria coronopifolia as the most preferred species. Herbivore exclusion experiment shows that Hypnea charoides and Gracilaria coronopifolia are the species recruited in the cages. Ceratodictyon spongiosum had high biomass in FFA1 and FFA2 in January, which was ‘low DOP/high DON’. The coindicence of temporal variations in FFA3 assemblage structure with a change from ’Halimeda opuntia and Boodlea compostia’ → ’Amphiroa fragilissima, Corallina phhulifera and Galaxaura oblongata’ →’Halimeda opuntia and Boodlea compostia’ with low nitrogen/ high phosphorous’ →’ high nitrogen/ low phosphorous’ → ’low nitrogen/ high phosphorous’ suggest a role of ’low nitrogen (NO3-)/high phosphorous (DOP)’ for FFA3 structure modification. NFFA assemblage is controlled by temperature and monthly cumulative precipitation. Monthly cumulative precipitation in September was higher than January and April, in which Boodlea compostia and Gracilaria coronopifolia were dominant algae in September. The temperature growth responses of algae using the continuous-flow outdoor laboratory tank culture system fit their seasonal growth, reflecting the temperature-dependent manner of seasonal variations in abundance. It could be concluded from the present investigation that the structure of benthic macroalgal assemblage in Hsiao-Lu-Chiao island in southwestern Taiwan is affected by predicted natural and pulse disturbances. Temperature fluctuations involve in overall temporal variations in structure. Sea urchin herbivory and nutrient as pulse nutrient modulate the structure in fish farming area while monthly cumulative precipitation is associated with algal structure in non-fish farming area.
目次 Table of Contents
章次 頁數
一、前言……………………………………………………… 1
二、材料與方法……………………………………………… 7
三、結果……………………………………………………… 22
四、討論……………………………………………………… 85
五、參考文獻………………………………………………… 92
六、附錄……………………………………………………… 100
參考文獻 References
黃淑芳。2000。臺灣東北角海藻圖錄。國立臺灣博物館。
行政院農業委員漁業署。2001。漁業年報。台灣,中華民國。
Boyd, C. E. 1979. Water Quality in Warmwater Fish Ponds. Auburn University Agriculture Experiment Station. Alabama 24-26
Carballo, J. L., Olabarria, C. and Osuna, T. G. 2002. Analysis of four macroalgal assemblages along the Pacific Mexican Coast during and after the 1997-98 El Niño. Ecosystems 5:749-760
Clarke, K. R. 1990. Comparisons of dominance curves. Journal of Experimental MarineBiology and Ecology 138:143-157
Clarke, K. R. and Ainsworth, M. 1993. A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92:205-219
Clarke, K. R. and Green, R. H. 1988. Statistical design and analysis for a ‘biological effects’ study. Marine Ecology Progress Series 46:213-226
Corsica, S. L. and Ang, Jr. P. O. 2004. Seasonal occurrence and reproduction of Hypnea charoides (Rhodophyta) in Tung Ping Chau, N. T., Hong Kong SAR, China. Hydrobiologia 512:63-78
DeBoer, J. A. and Ryther, J. H. 1977. Potential yields from a waste-recycling algal mariculture system. in (Krauss R. ed.), The Marine Plant Biomass of the Pacific Northwest Coast. Corvallis:Oregon State University Press. pp.231-249
Diaz-Pulido, G. and Garzon-Ferreira, J. 2002. Seasonality in algal assemblages on upwelling-influenced coral reefs in Colombian Caribbean. Botanica Marina 45:284-292
Dempster, T., Sanchez-Jerez, P., Tuya, F., Fernandez-Jover, D., Bayle-Sempere, J., Boyra, A. and Haroun, R. 2006. Coastal aquaculture and conservation can work together. Marine Ecology Progress Series 314:309-310
Doty, M. S., 1971. The productivity of benthic frondose algae at Waikiki Beach, 1967-1968. Hawaii Bot. Sci. 22:119
Enell, M. (1995) Environmental impact of nutrients from Nordic fish farming,
Water Science Technology 31:61-71
Everitt, B. 1978. Graphical techniques for multivariate data. Heinemann, London
Eriksson, B. K. and Bergström, L. 2005. Local distribution patterns of macroalgae in relation to environmental variables in the northern Baltic Proper. Estuarine, Coastal and Shelf Science 62:109-117
FAO 2004. Fishstat Plus. Aquaculture production: quantities 1950-2003. Food and Agriculture Organisation, Rome.
Findlay, R.H. and Watling, L.. 1997. Prediction of benthic impact fro salmon net-pens based on the balance of benthic oxygen supply and demand. Marine Ecology Progress Series 155:147-157.
Fletcher, W. J. 1987. Interations among subtidal Australian sea urchins, gastropods and algae: effects of experimental removals. Ecological Monograph 57:89-107
Hall, P. O. J., Anderson, L. G., Holby, O., Kollberg, S., Samuelsson, M. O., 1990. Chemical fluxes and mass balances in a marine fish cage farm. I. Carbon. Marine Ecology Progress Series 61:61-73.
Hall, R. I. and Smol, J. P. 1992. A weighted averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwater Biology 27: 417-434.
Hall, P. O. J., Holby, O., Kollberg, S., Samuelsson, M. O., 1992. Chemical fluxes and mass balances in a marine fish cage farm. IV. Nitrogen. Marine Ecology Progress Series 89:81-91.
Hanelt, D. 1992. Photoinhibitation of photosynthesis in marine macrophytes of the south Chinese Sea. Marine Ecology Progress Series 82:199-206
Hanelt, D., Huppertz, K. and Nultisch, W. 1993. Daily course of photosynthesis and photoinhibitition in marine macroalgae investigated in the laboratory and field. Marine Ecology Progress Series 97:31-37
Hanisak, M. D. and Harlin, M. M. 1978. Uptake of inorganic nitrogen by Codium fragile ssp. tomentosoides (Chlorophyta). Journal of Phycology 14: 450-454
Hargrave, B. T., Phillips, G. A., Doucette, L. I., White, M. J., Milligan, T. G., Wildish, D. J. and Cranston, R. E. 1997. Assessing benthic impacts of organic enrichment from marine aquaculture. Water, Air Soil Pollution 99: 641-650.
Harmblin, P. F. and Gale, P. 2002. Water quality modeling of caged aquaculture impacts in Lake Wolsey, North Channel of Lake Huron. Journal of Great Lakes Research 28:32-43
Heaney, S. I., Foy, R. H., Kennedy, G. J. A., Crozier, W. W. and O'Connor, W. C. K. 2001. Impacts of agriculture on aquatic systems: Lessons learnt and new unknowns in Northern Ireland. Marine and Freshwater Research 52:151-163
Hemmi, A., Makinen, A., Jormalainen, V. and Honkanen, T. 2004. Responses of growth and phlorotannins in Fucus vesiculosus to nutrient enrichment and herbivory. Aquatic Ecology 39:201-211
Holby, O. and Hall, P. O. J. 1991. Chemical fluxes and mass balances in a marine fish cage farm. II. Phosphorus. Marine Ecology Progress Series 70:263-272
Holby, O. and Hall, P. O. J. 1994. Chemical fluxes and mass balances in a marine fish cage farm. III. Silicon. Aquaculture 120:305-318
Holmer, M. 1991. Impacts of aquaculture on surrounding sediments: generation of organic-rich sediments. in (De Pauw, N, Joyce, J. eds.). Aquaculture and the environment. European Aquacult Society Special Publication 16: 155-175.
Hughes, T. P. 1994. Catastrophes, phase-shifts and large scale degradation of a Caribbean coral reef. Science 265:547-1551
Huang, S. F. 1999a. Floristic studies on the benthic marine algae of northeastern Taiwan. Taiwania 44:271-298
Huang, S. F. 1999b. Notes on marine algae new to Taiwan. Taiwania 44:345-354.
Hughes, T. P., Szmant, A. M., Steneck, R., Carpenter, R. and Miller, S. 1999. Algal blooms on coral reef s: what are the causes? Limnology Oceanography 44:1583-1586
Hwang, R. L., Tai, C. C. and Lee, T. M. 2004 Assessment of temperature and nutrient limitation on seasonal dynamics among species of Sargassum from a coral reef in southern Taiwan. Journal of Phycology 40:463-473
Jokiel, P. L. 1978. Effects of water motion on reef corals. Marine Ecology Progress Series 35: 87-97.
Jokiel, P. L. and Morrissey, J. I. 1993. Water motion on coral reefs; evaluation of the ‘clod card’ technique. Marine Ecology Progress Series 93:175-181
Karez, R, Engelbert, S., Kraufuelin, P., Pedersen, M. F., and Sommer, J. 2004. Biomass response and changes in composition of ephemeral macroalgal assemblages along an experimental gradient of nutrient enrichment. Aquatic Botany 78:103-117
Kenkel, N. C. and Orloci, L. 1986. Applying metric and nonmetric multidimensional scaling to some ecological studies: some new results. Ecology 67:919-928
King, R. J. and Schramm, W. 1976. Photosynthetic rates of benthic marine algae in relation to light intensity and seasonal variations. Marine Biology 37:215-222
Klumpp, D. W. and McKinnon, A. D. 1992. Community structure, biomass and productivity of epilithic algal communities on the Great Barrier Reef: dynamics at different spatial scales. Marine Ecology Progress Series 86:77-89
Kruskal, J. B. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1-27
Lance, G. N. and Williams, W. T. 1967. A general theory of classificatory sorting strategies: 1 Hierarchical Systems. Computer Journal 9:373-380
Lapointe, B. E. 1987. Phosphorus- and nitrogen-limited photosynthesis and growth of Gracilaria tikvahiae (Rhodophyceae) in the Florida Keys: an experimental field study. Marine Biology 93:561-568
Lapointe, B. E. and Littler, M. M. and Littler, D. S. 1992. Nutrient availability to marine macroalgae in siliciclastic versus carbonate-rich coastal waters. Estuaries 15:75-82
Lapointe, B. E. 1997. Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnology and Oceanography 42: 1119-1131
Lapointe, B. E. 1999.Simultaneous top-down and bottom-up control forces control macroalgal blooms on coral reefs (Reply to the comment by Hughes et al.). Limnology Oceanography 44:1586-1592
Lapointe, B. E., Barile, P. J., Yentsch, C. S., Littler, M. M., Littler, D. S. and Kakuk, B. 2004. The relative importance of nutrient enrichment and herbivory on macroalgal communities near Norman’s Pond Cay, Exumas Cays, Bahamas: a “natural” enrichment experiment. Journal of Experimental Marine Biology and Ecology 298:275-301
Larned, S. T. 1998. Nitrogen- versus phosphorus- limited growth and sources of nutrients for coral reef macroalgae. Marine Biology 132:409-421
La Rosa, T., Mirto, S., Mazzola, A., Danovaro, R. 2001. Differential responses of benthic microbes and meiofauna to fish-farm disturbance in coastal sediments. Environmental Pollution 112: 427-434
Lee, T. M. 1998. Changes in activities and properties of biosynthetic enzymes in relation to high- temperature-induced proline accumulation in Gracilaria tenuistipitata (Gigartinales, Rhodophyta). Phycologia 37:433-438
Lee, T. M., Chang, Y. C. and Lin, Y. H. 1999. Difference in physiological response between winter and summer Gracilaria tenuistipitata (Gigartinales, Phodophyta) to varying temperature. Botanical Bulletin of Academia Sinica 40:93-100
Lee, T. M. 2004. Induction of acid phosphatase activity by phosphorus deficiency in Gracilaria coronopifolia (Gigartinales, Rhodophyta). Phycologia 43:493-500
Legendre, P. and Legendre, L. 1998. Numerical Ecology. 2nd Engl. Edn. Elsevier, Amsterdam
Liddell, W. D. and Ohlhorst, S. L. 1986. Changes in benthic community composition following the mass mortality of Diadema at Jamaica. Marine Biology 95:271-278
Littler, M. M. and Murray, S. N. 1975. Impact of sewage on the distribution, abundance and community structure of rocky intertidal macroorganisms. Marine Biology 30:277-291
Littler, M. M. and Littler, D. S. 1984. Models of tropical reef biogenesis: the contribution of algae. Phycology Research 3:323-64
Littler, M. M., Littler, D. S. and Titlyanov, E. A. 1991. Comparision of N- and P-limited productivity between high granitic islands versus low carbonate atolls in the Seychelles Archipelago: a test of the relative-dominance paradiam. Coral Reefs 10:199-209
Lobban, C. S. and Harrison, P. J. 1997. Seaweed Ecology and Physiology. Cambridge University Press, New York. pp.366
Magurran, A. E. 1991. Ecological diversity and its measurement. Chapman and Hall, London
Marra, J. 2005. When will we tame the ocean? Nature 436:175-176
Maudsley, B. 1990. Defender of the reef. New Science 126:52-56
Menzel, D. W. and Crown, N. 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnology and Oceanograpgy 10:280-282
McCook, L. J. 1996. Effects of herbivores and water quality on the distribution of Sargassum on the central Great Barrier Reef: cross-shelf transplant. Marine Ecology Progress Series 139:179-192
McCook, L. J. 1997. Effects of herbivory on zonation of Sargassum spp. within fringing reefs of the central Great Barrier Reef. Marine Biology 129:713-722
McCook, L. J. 1999. Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18:357-367
McCook, L. J., Jompa, J. and Diaz-Pulido, G. 2001. Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400-417
McGlathery, K. J. 1995. Nutrient and grazing influences on a subtropical seagrass community. Marine Ecology Progress Series 122:239-252
Mirto, S. 2000. Microbial and meiofaunal response to intensive mussel-farm biodeposition in coastal sediments of the Western Mediterranean. Marine Pollution. Bulletin 40:244-252
Morris, J. 1974. Nitrogen assimilation and protein synthesis. In (Stewart W. D. P. ed). Algal Physiology and Biochemistry. Unervisity of California Press. Berkeley and Los Angeles pp.583-609
Murphy, J. and Riley, J. P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chemical Acta 27:31-36
Neushul, M. and Coon, D. 1971. Bibliography on the ecology and taxonomy of marine algae. In (Rosowski J. R. and Parker B. C., eds) Selected Papers in Phycology. Department of Botany, University of Nebraska. pp.12-17
Parsons, T. R., Maita, Y. and Lalli, C. M. 1984. A Manual of Chemical and Biological Methods for seawater Analysis. Pergamon Press, New York, U. S. A. 1st ed. pp. 14-17
Pauly, D., Christensen, V., Guenette, S., Pitcher, T.J., Sumaila, U.R., Walters, C.J., Watson, R. and Zeller, D. 2002. Toward sustainability in world fisheries. Nature 405:1017-1024
Pergent, G., Mendez, S., Pergent-Martini, C. and Pasqualini, V. 1999 Preliminary data on the impact of fish farming facilities on Posidonia oceanica meadows in the Mediterranean. Oceanologica Acta 22:95-107
Pearson, T. H. and Rosenberg, R. 1978. Macrobenthic succession in relation to organic enrichment andpollution of the marine environment. Oceanography and Marine Biology Annual Review 16:229-311
Pearson, T. H. and Black, K. D. 2001: The environmental impacts of marine fish cage culture. In (Black, K.D. ed) Environmental impacts of aquaculture. Sheffield Academic Press, Sheffield, United Kingdom. . pp.1-31
Piazzi, L., Pardi, G. G., Balata, D., Cecchi, E. and Cinelli, F. 2002. Seasonal dynamics of a subtidal north-western Mediterranean macroalgal community in relation to depth and substrate inclination. Botanica Marina 45:243-252
Ronnberg, O. 1991. Changes in the benthic vegetation in the Aland archipelago Forandringar i bottenvegetation i alandska skargardsvatten]. Memoranda Societatis pro Fauna Flora Rennica 67:102-106
Rosenberg, G.. and Ramus, J. 1981a. Ecological growth strategies in the seaweeds Gracilaria foliifera (Rhodophyceae) and Ulva sp. (Chlorophyseae): the rate and timing of growth. Botanica Marina 24:583-589
Rosenberg, G. and Ramus, J. 1981b. Ecological growth strategies in the seaweeds Gracilaria foliifera (Rhodophyceae) and Ulva sp. (Chlorophyseae): soluble nitrogen and reserve carbohydrates. Marine Biology 66:251-259
Shephard, R. N. 1962. The analysis of proximities: multidimensional scaling with an unknown distance function. Psychometrika 27:125-140
Schaffelke, B. and Klumpp, D. W. 1998. Nitrogen-limited growth of the coral reef macroalga Sargassum baccularia and experimental growth enhancement by nutrient addition in continuous flow culture. Marine Ecology Progress Series 164:199-211
Shannon, C. E. and Weaver, W. 1963. The mathematical theory of communication. University Illinois Press. Urbana, IL. pp.144
Simpson, E. H. 1949. Measurement of diversity. Nature 163:688
Smith, C. M. and Berry, J. A. 1986. Recovery of photosynthesis after exposure of intertidal algae to osmotic and temperature stresses: comparative studies of species with differing distributional limits. Oecologia 70:6-12
Sneath, P. H. A. and Sokal, R. R. 1973. Numerical taxonomy. Freeman, San Francisco
Thacker, R.W., Ginsburg, D.W. and Paul, V. J. 2001. Effects of herbivore exclusion and nutrient enrichment on coral reef macroalgae and cyanobacteria. Coral Reefs 19:318-329
Topinka, J. A. and Robbins, J. V. 1976. Effects of nitrate and ammonium enhancement on growth and nitrogen physiology in Fucus spiralis. Limnology Oceanography 21:659-664
Trautman, D. A., Hindle, R. and Borowitzka, M.A. 2000. Population dynamics of an association between a coral reef sponge and a red macroalga. Journal of Experimental Marine Biology and Ecology 244:87-105
Trautman, D. A., Hindle, R. and Borowitzka, M.A. 2003. The role of habitat in determining the distribution of a sponge-red alga symbiosis on a coral reef. Journal of Experimental Marine Biology and Ecology 283:1-20
Tsai, C. C., Chang, J. S., Sheu, F., Shyu, Y. T., Yu, A. Y. C., Wong, S. L., Dai, C. F. and Lee, T. M. 2005. Seasonal growth dynamics of Laurencia papillosa and Gracilaria coronopifolia from a highly eutrophic reef in southern Taiwan: temperature limitation and nutrient availability. Journal of Experimental Marine Biology and Ecology 315:49-69
Valentine, J.F., K.L. Heck, Busby, Jr. J. and Webb, D.1997. Experimental evidence that herbivory increases shoot density and productivity in a subtropical turtle grass (Thallassia testudinum) meadow. Oecologia, 112:193-200
Weston, D. P. 1990. Quantitative examination of macrobenthic community changes along an organic enrichment gradient. Marine Ecology Progress Series 61:233-244
Wheeler, P. A. and Björnsäter, B. R. 1992. Seasonal fluctuations in tissue nitrogen, phosphorus and N:P for five macroalgal species common to the Pacific northwest coast. Journal of Phycology 28:1-6
Williams, I.D., Polunin, N. V. C., 2001. Large-scale associations between macroalgal cover and grazer biomass on mid-depth reefs in the Caribbean. Coral Reefs 19:358-366
Wu, R. S. S., Lam, K. S., MacKay, D. W., Lau, T. C. and Yam, V. 1994. Impact of marine fish farming on water quality and bottom sediment: A case study of the sub-tropical environment. Marine Environmental Research 38:115-145
Wu, B. S. S. 1995. The environmental impact of marine fish culture: Towards a sustainable future. Marine Pollution Bulletin 31:159-166
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.147.104.248
論文開放下載的時間是 校外不公開

Your IP address is 3.147.104.248
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code