Responsive image
博碩士論文 etd-0908107-213528 詳細資訊
Title page for etd-0908107-213528
論文名稱
Title
以感應線圈加熱法在射出筒內面製作鎳基金屬粉末熔合塗層之微結構分析
Microstructure analysis for nickel- base metal powder fusion coated inside the injection tube by using induction coil heating method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-26
繳交日期
Date of Submission
2007-09-08
關鍵字
Keywords
感應加熱、塗層、鎳基
Coating, Nickel-based, Induction heating
統計
Statistics
本論文已被瀏覽 5670 次,被下載 0
The thesis/dissertation has been browsed 5670 times, has been downloaded 0 times.
中文摘要
在雙金屬料管的感應加熱製程中,料管內面之合金層易因加熱功率、最高溫度、持溫時間的選用不當,造成大量孔洞缺陷的問題。本文將針對最高溫度、高溫保持時間對鎳基合金層的顯微組織、孔洞缺陷的影響進行探討。
實驗將分兩部分進行,其一為利用模擬實驗法,係將鎳基合金粉末放入AISI 4140 鋼試片中,於真空中利用高週波爐分別在最高溫度(920℃~1180℃)下熔解鎳基合金粉末,並於溫度達到後,分別持溫(0~10分鐘),之後爐冷至700℃再空冷到室溫。利用光學顯微鏡(OM)、掃描式電子顯微鏡(SEM),分析鎳基合金層、鎳基合金層與鋼材界面處之顯微結構、成份分析、孔洞缺陷及界面擴散情形。
實驗結果顯示,當最高溫度為920℃~1050℃時,不論持溫與否,鎳基合金層皆含有γ-Ni、CrB、Cr7C3等相。從金相觀察可發現,隨著最高溫度與持溫時間的增加CrB與Cr7C3等相有粗化與含量減少的趨勢。另外,隨著最高溫度與持溫時間的增加,合金層與鋼材界面所生成之白層即擴散區有變寬的趨勢。
其二為現場實驗法,係利用感應線圈在不同加熱功率(200~285KW)、最高溫度(1020~1040℃)、持溫時間(10、30、50sec)、回轉速(1000~1300rpm) 等條件下,對內層含有鎳基合金粉末之料管進行加熱。從實驗中發現持溫時間不足時,合金層表層因溫度較低,所形成之液體量無法充分填滿孔隙,而形成蠕蟲狀之孔洞缺陷;持溫時間太長時,合金層容易生成粗大的樹枝狀晶,阻礙了液體的流動,促進凝固縮孔的生成。
從顯微組織觀察得知,隨著最高溫度與持溫時間的增加,有利樹枝狀晶的生成,且樹枝狀晶的生成,會使合金層中CrB,和Cr7C3等硬化相分佈不均,使合金層硬度降低。樹枝狀晶,一般由界面往合金層表面生長。另外,合金層經X光繞射分析(XRD),合金層主要含有γ-Ni、Ni3B、Ni3Si、CrB、Cr7C3等相。其中CrB和Cr7C3是主要的硬化相,也是造成合金層擁有高硬度的主因。
隨著最高溫度與持溫時間的增加,合金層界面生成之白層即擴散區,因來自基材(即料管)的元素擴散越快,在界面形成的金屬間化合物層也就越寬。當750~1030℃加熱時間高於800sec後,鐵元素之擴散已經遍及整個合金層,當最高溫度與持溫時間增加時,在界面與界面附近之硬化相有粗化與含量減少的趨勢。
Abstract
For the induction heating process of bi-metallic tubes, the inner tube of alloy-layer is much easier to cause a lot of defects of cavities due to the fact that heating power, maximum temperature value and the time frame of temperature retention were chosen improperly. This research focuses on the effect of maximum temperature value and the time frame of temperature retention on the micro-structure and defects of cavities of the Nickel-based alloy-layer.
The experiments of this study are divided into two parts. In the domain of the experiment in simulation fashion, Nickel-based alloy powders were put into the specimens of AISI 4140 steel. Radio Frequency (RF) oven were used to smelt Nickel-based alloy powders in the vacuum conditions over the maximum temperature range of 920~1180℃respectively. After that, the time frame of temperature retention was conducted from 0 to 10 minutes. Then, the furnace-cooling went down to 700℃ then air-cooling down to the room temperature. Nickel-based alloy-layer, microstructure, component analysis, defects of cavities of the interface between Nickel-based alloy-layer and steels, and diffusion of interfaces were analyzed using optical microscopes (OM) and scanning electron microscopes (SEM).
From the experiments, it was found that Nickel-based alloy-layer consisted of γ-Ni、CrB、Cr7C3 over the maximum temperature range of 920~1050℃whether temperature retention is performed or not. According to the findings of metallographic observation, the increase of coarsening and the reduction of the capacity of CrB and Cr7C3 become more obvious as maximum temperature value and the time frame of temperature retention become large. In addition, the whitening layer (diffusion zone) formed between the interface of alloy-layer and steels become much wider as maximum temperature value and the time frame of temperature retention become large.
Secondly, the field experiment method was also applied in this paper. The tube rich in Nickel-based alloy powders was heating to analyze induction coil in various conditions: heating power (200~285KW), maximum temperature value (1020~1040℃), the time frame of temperature retention (10, 30, 50sec), and the rotating speed (1000~1300rpm). The results of the experiments indicated that the surface of the alloy-layer cause defects of vermicular cavities since the volume of liquid cannot fill out the crack of cavities completely due to lower temperature when there is insufficient time; too long periods of the time frame of temperature retention lead to the tough and huge dendrites to obstacle the flowing of liquid and the solidification of shrinkage cavity.
According to the observation of the microstructure, the larger the maximum temperature value and the time frame of temperature retention were, the more the dendrites formed. The formation of dendrites causes not only the uneven distribution of hardening phase of CrB and Cr7C3 of the alloy-layer but also the reduction of hardness of the alloy-layer. The dendrites are typically formed from the interface to the surface of the alloy-layer. Besides that, the alloy-layer mainly consists of γ-Ni, Ni3B, Ni3Si, CrB, and Cr7C3 via X-ray Diffraction (XRD). Among them, the main hardening phases are CrB and Cr7C3 which is the main reason that the alloy-layer has high-level hardness.
As maximum temperature value and the time frame of temperature retention become large, the whitening layer (diffusion zone) was formed between the interface of alloy-layer become much wider because the faster the elements of the based materials (tube) diffused and the wider the intermetallic compound formed among the interfaces. After heated for 800 seconds over the temperature range of 750~1030℃, iron element was diffused all over the alloy-layer. The increase of coarsening and the reduction of the capacity near interface and interface become more obvious as maximum temperature value and the time frame of temperature retention become large.
目次 Table of Contents
封面 i
學位論文審定書 ii
謝誌 iii
總目錄 iv
圖目錄 viii
表目錄 xii
中文摘要 xiii
英文摘要 xv
第一章 緒論 1
1.1前言 1
1.2 研究動機與目的 3
第二章 文獻回顧與理論基礎 5
2.1 感應加熱之簡介 5
2.2 鎳基自熔合金(Nickel-based Self-fluxing alloy) 9
2.3 鎳基合金中的相 15
2.3.1 γ-Ni相 15
2.3.2 γ'相16
2.3.3 碳化物 16
2.3.4 相鑑定 17
2.3.5 影響相型態的因素 18
2.4 常見鑄件缺陷種類 19
2.5 磨耗(Wear) 20
2.6 影響磨耗性質之因素 22
第三章 實驗方法與步驟 23
3.1 高週波感應加熱實驗分析 23
3.1.1 實驗合金粉末選用 23
3.1.2 高週波感應加熱實驗參數條件 24
3.1.3 實驗試片製作 25
3.1.3.1試片基材 25
3.1.3.2試片編號 27
3.1.4 實驗步驟 27
3.1.5 實驗分析 28
3.1.5.1 光學顯微鏡(OM)觀察 28
3.1.5.2 掃描式電子顯微鏡(SEM)觀察與成份分析 28
3.1.6 相鑑定 28
3.1.6.1 X光繞射分析 28
3.2 感應線圈加熱法實驗分析 29
3.2.1 實驗合金粉末選用 29
3.2.2 感應線圈加熱設備及設定實驗參數 30
3.2.3 實驗試片製作 34
3.2.4 實驗分析 34
3.2.5 網格法孔洞率分析 34
3.2.6 實驗流程圖 35
第四章 結果與討論 36
4.1 高週波感應加熱製程條件對鎳基合金顯微組織的影響 36
4.1.1 光學顯微鏡(OM)之顯微組織觀察 36
4.1.2 掃描式電子顯微鏡(SEM)觀察與EDS成份分析 39
4.2 鎳基合金層與4140鋼界面處 45
4.2.1 光學顯微鏡(OM)之顯微組織觀察 45
4.3 孔洞缺陷分析 50
4.4 感應線圈加熱法製程參數對鎳基合金層顯微組織的影響 53
4.4.1 X光繞射分析(XRD) 53
4.4.2 相硬度 53
4.4.3 光學顯微鏡(OM)之顯微組織觀察 54
4.4.4 掃描式電子顯微鏡(SEM)之顯微組織觀察 54
4.4.5 感應線圈加熱製程參數對合金層孔洞缺陷之影響 57
4.4.6 感應線圈加熱合金層硬化相之觀察 73
第五章 結論 77
第六章 參考文獻 79
參考文獻 References
[1].洪忠喜,“熱處理”,全華書局‚2002,pp69~103.
[2].F.S.Chou and W.Roberson,“High Temperature CorrosionResistant Bimetallic Cylinder”,US Patent 5019459,April.1990.
[3].D.W.Maddy, and G.Rajendran,“Heat Treated High Strength Bimetallic Cylinder”,US Patent 4596282, May.1985.
[4].F.S.Chou,“Corrosionand Wear Resistant Bimetallic Cylinder”,US Patent 5185162,June.1991.
[5].D.W.Maddy,“Resin molding process employing a Nickel-Based Alloy liner”, US Patent 4863661, July.1988.
[6].P.D.Lomax and M.R.Boggs,“Backing Material”, US Patent 44103800,April.1977.
[7].Davies,E.J.,and Simpson,P.G.,“Induction Heating Handbook”,Mcgraw-Hill Book company Ltd,London, 1995.
[8].饒煥欽與寇立人中譯,”最新金屬接合技術”,復漢出版社, 1996,pp28.
[9].K.M.Kulkarni,“Powder Metal Technologies and Applications”,ASM International Materials Park,1998, pp.174-175.
[10].R.M.German,”Powder Metallurgy Science”,Metal Powder Industries Federation”, 1994.
[11].P.La,Q.Xue,W.Liu,“Effects of Boron Doping on Tribological Properties of Ni3Al-Cr7C3 Coatings under Dry Sliding”,Wear Vol.249,2001,pp.94-100.
[12].L.Q.Zhang,“High Temperature Sliding Wear Resistance of a Cr3Si/Cr12Ni5Si2 Multi phase Intermet allic Alloy”,Materials Letters,Vol.57,2003, pp.2710-2715.
[13].T.Takasugi,“The Effect of Cr Addition on Mechanical and Chemical properties of Ni3Si Alloys”, Meterials Scienceand Engineering, A329 -331,2002,pp.446-454.
[14].C.G.Mckamey,J.H.Devan,P.F.Tortorelli and V.K.Sikka,“A Review of Recent Developments In Fe3Al-Based Alloy”,Journal of Materials Research, Vol.6, Research,Vol.6,1991,pp.1779-1793.
[15].D.J.Stephenson ,“Surface Finishing of Ni-Cr-B-Si Composite Coatings by precision Grinding”, International Journal of Machine Tools & Manufacture, Vol.42,2002,pp.357-363.
[16].H.B.Tang,“Microstructure and Dry Sliding Wear Resistance of a Cr13Ni5Si2 Ternary Metal Silicide Alloy”,Acta Materialia,Vol.52,2004,pp.1773-1783.
[17].Lebaili S and Hamar-thibault S,“Equilibres Liquide-Solide Dans Le System Ni-B-Si Dans La Region Riche En Nickel”, Acta Metall, 1987,35(3), pp.701-710.
[18].T.T.Wong,“Wear Resistance of Laser-Clad Ni-Cr-B-Si Alloy on Aluminium Alloy”,Journal of Materials Processing Technology,Vol.100,2000, pp.142-146.
[19].J.H.Jin,“The Sliding Wear Behaviour of Reactively Hot Pressed Nickel Aluminids”, Wear,Vol.217,1998,pp.200-207.
[20].G.H.Meier,N.Birks and F.S.Pettit,“Environmental Behaviour of Intermetallic Materials”,Metals and Materials Society,1993, pp.861-877.
[21].J.W.Newkirk and J.A.Hawk,“Abrasive Wear Properties of Cr-Cr3Si Composites”,Wear,Vol.251, 2001,pp.1361-1371.
[22].G.Duan and H.M.Wang,“High-Temperature Wear Resistance of a Laser-Cladγ/Cr3Si Metal Silicde Composite Coating”,Scripta Materialia.Vol.46,2002, pp.107-111.
[23].G.Duan,H.Y.Zhao,and H.M.Wang,“Study of Wear Resistance of a Laser Clad Cr3Si/Cr2Ni3Si Composite”,Coat Acta Mater,Compos Sinica,Vol.19, 2002,pp.32-36.
[24].G.F.Archer and D.J.Stephenson,“Surfacing of Twin Screw Extruder Barrels”,Surf.Eng,Vol.10, 1994,pp.271-274.
[25].J.D.Ayers,“Wear BehavIor of Carbide-Injected Titanumand Aluminum Alloys”,Wear,Vol.97,1984, pp.249-254.
[26].吳伯成,“超音速火焰熔射技術”,工業技術研究院工業材料研究所,1992.
[27].A.Sandt,Flame sprayed and fused NiCrBSi coating with additives,surfacingJ.Inter,Vol.1,NO.44, 1986,pp.133-137.
[28].J.D.Schobel and H.H.Stadelmaier,Z.Metallkde, Vol.56,1965, pp.856.
[29].O.Knoted and E.Lugscheider,on the structure of NiCrBSi hardfacing alloys and their bonding reaction, J.Vac.Sci.Technol.,Vol.11,No.44,1974,pp.798-801.
[30].王家瓚、許讚全,“鎳基自熔合金塗層高週波重熔特性研究”,台灣電力公司研究專題,2001,pp.4-8.
[31].吳建德,“自熔合金熔射及應用”,電漿熔射塗層應用講習會資料,1991,pp.27-53.
[32].AWS committee on brazing and soldering,brazing manual,3rd.edition,1975,pp.21-54.
[33].D.C.Madeleine,“The Microstructure of Superalloys”,Gordon and Breach SciencePublisher, 1972,pp.47-49.
[34].E.R.Robet,”Physical Metallurgy Principles”,International Thomson Publishing,1994.
[35].T.S.Chester,C.H.William,“The Superally”,A Wiley-Interscience Publication,1972.
[36].W.H.Tian,C.S.Han,M.Nemoto,“Mechanical Properties and Deformation-Induced Microstructure
of Li2-Ordered Ni3(Al,Cr) Containing a Fine Dispersion of M23C6 Carbide”,Intermetallics Vol.5, 1997,pp.195-201.
[37].劉宗熹等著,”熔解溫度對Ni-Cr-Si硬面合金顯微組織的影響”, 義守大學材料科學與工程學系碩士論文,2003.
[38].Q.Li,T.C.Lei,W.Z.Chen,“Microstructural Characterization of WCp reinforced Ni-Cr-B-Si-C Coatings”,
Surface and Coatings Technology Vol.114,1999, pp.285-291.
[39].Y.N.Liang,M.I.Ssendi,P.Miranzo,“Joining Mechanism in Si3N4 Bonded with a Ni-Cr-B Interlayer”,Journal of the European Ceramic
Society Vol.23,2003,pp.547-553.
[40].Y.Fu,A.w Batchelor,“The Effect of Laser Alloying on the Fretting Wear Resistance”,Surface and Coating Technology Vol.102,1998,pp.119-126.
[41].G.Y.Liang,T.T.Wong,“Microstructure and Character of Laser remelting of Plasma Sprayed coating (Ni-Cr-B-Si) on Al-Si alloy”,Surface and Coatings Technology Vol.89,1997, pp.121-126.
[42].P.Z.Wang,J.X.Qu,H.S Shao,“Cemented Carbide Reinforced Nickel-Based Alloy Coating by Laser Cladding and the Wear Charactersitcs”,Materials and Design,Vol.17,1996,pp.289-296.
[43].L.Qiang,Z.Dawei,L.Tingquan,C.Chuanzhong,and Wenzhe, “Comparison of Llaser-Clad and Furnace-Melted Ni-based Alloy Microstructures”,Surf.coat. Technol,Vol.137,2001, pp.122-135.
[44].A.Yang,Y.Xiong,L.Liu,“Effect of Cooling Rate on The Morphology of γ'Precipitates in A Nickel-Base Superalloyunder Directional Solidification”,Science and Technology of Advanced Materials Vol.2,2001,pp.105-107.
[45].L.Muller,U.Glatzel,and M.Kniepmeier,“Modelling Thermal Misfit Stress in Nickel-Base Superalloys Containing High Volume Fraction of γ'phase”,Acta Metall.Mater,Vol.40, No.6,1992,pp.1321-1327.
[46].S.S.Babu,M.K.Mmille,J.M.Vitek,and S.A.David,“Characterization of The Microstructure Evolution in a Nickel Base Superalloy during Continuous Cooling Conditions”,Acta Meter,Vol.49,1989,pp.4149-4160.
[47].D.W.Zhang,T.C.Lei,J.G.Zhang,J.H.Ouyang,“The Effect of Heat Treatment on Microstructure and Erosion Properties of Laser Surface-Clad Ni-Base Alloy”,Surface and Coatings Technology Vol.115, 1995,pp.176-183.
[48].林文和、邱傳聖,“鑄造學”,高立圖書,第四版,1995.
[49].N.A.Water and M.F.Ashby,“Elsevier Materials Selector”, Elsevier Science Publisher LTD.,Vol.1, 1992,pp.326-331.
[50].“Annual Book of ASTM Standards G40-94”,ASTM,Vol.3, 1994,pp.165.
[51].H.C.Meng and K.C.Ludemu,“Wear Models and Predictive Equations: Their Form and Content”,Wear,Vol.181-183,1995,pp.443-457.
[52].J.A.Willams,“Wear Modelling:Analytical, Computational and Mopping:A Continuum Mechanics Approach”,Wear,Vol.255-299,1999,pp.1-17.
[53].J.T.Burwell,“Survey of Possible Wear Mechanisms”,Wear,Vol.1,1957,pp.119-141.
[54].K.H.Z.Gahr,“Microstructure and Wear of Materials”, Elsevier,1987,pp.351-355.
[55].謝榮淵,“雙金屬料管製程參數最適化建立”,技術報告,2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.186.92
論文開放下載的時間是 校外不公開

Your IP address is 18.117.186.92
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code