Responsive image
博碩士論文 etd-0908109-180912 詳細資訊
Title page for etd-0908109-180912
論文名稱
Title
島嶼型河川之海陸交互作用:潮汐對河口區顆粒態有機碳及無機碳之影響
Tidal Influence on Particulate Organic and Inorganic Carbon in the River Mouth Region of a Small Mountainous River
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-31
繳交日期
Date of Submission
2009-09-08
關鍵字
Keywords
河口、懸浮物質、潮汐、沖淡水
POC, Chlorophyll-a, PIC
統計
Statistics
本論文已被瀏覽 5704 次,被下載 1318
The thesis/dissertation has been browsed 5704 times, has been downloaded 1318 times.
中文摘要
本研究在探討高屏溪河口區及river plume中顆粒態有機碳與無機碳之分佈與特性,並了解懸浮顆粒物質不同粒徑群分布及其葉綠素a濃度,進而了解河口區及river plume之潮汐動力影響。本研究所採集之懸浮顆粒樣品主要是利用Catnet多層網過濾裝置將不同顆粒粒徑之懸浮物質分離,並進行不同粒徑總懸浮顆粒物濃度、顆粒有機碳及無機碳以及葉綠素a之測定。
由5種懸浮顆粒粒徑群組(>153、63-153、10-63、3-10及0.7-3 μm)之有機碳與無機碳含量分布,發現細顆粒(<10 μm)群組中有機碳及無機碳均分別佔總量50%以上,顯示細顆粒含量為有機碳與無機碳濃度之主要控制因子。實驗結果證明有機碳及無機碳之主要載具為細顆粒,當細顆粒含量受環境因素影響時,將間接影響有機碳與無機碳之含量與分佈。
乾季各粒徑POC濃度明顯高於濕季,且乾季底層POC濃度高於表層,均是受高TSM所影響。兩季節表層與底層之各粒徑POC分佈也相同,主要粒徑群為細顆粒(<10 μm),顯示水層中POC主要粒徑群未受季節性變化影響。兩季節各粒徑群之PIC濃度分布亦呈現乾季大於濕季,兩季節表層總PIC濃度皆高於底層,推測可能是PIC沉降過程中溶解作用所造成。PIC主要粒徑群亦是以細顆粒(<10 μm)為主,且也未受季節影響。高屏溪河口及近岸TSM、POC、PIC之主要粒徑群皆屬於細顆粒群,懸浮顆粒的分佈型態深受潮汐作用影響,且主要粒徑群不受季節差異而改變。由此懸浮物質粒徑群特性可了解沉積物中TSM、POC及PIC之分布型態。
Abstract
This study aims to investigate both the distribution and character of particulate organic carbon (PIC) and particulate inorganic carbon (PIC) in the suspended sediment in the Gaoping estuary and its river plume. Furthermore, this study aims to investigate the tidal influence in the estuary and its plume by studying the size of sediment and the concentration of chlorophyll-a. In this study, suspended sediment, is mainly collected by multi-sieve filter, Catnet, which is used for the determinations of sediment size, organic carbon, inorganic carbon, as well as chlorophyll-a.
The result shows that fine particle (<10 μm) contributes more than 50% of the total weight in 5 suspended sediment groups (>153, 63-153, 10-63, 3-10, and 0.7-3), indicating that the PIC and POC are mainly controlled by the amount of fine particle. This suggests that fine particle is the carrier of the PIC and the POC, thus distributions of PIC and POC will be influenced as concentrations of the fine particle is influenced by environmental factors.
In dry season, POC concentration is higher than in wet season; moreover, the concentration of POC beneath is higher than the surface, suggesting the influence of TSM. The distributions of suspended sediment are similar in both wet and dry seasons in size of <10 μm, indicating there is no seasonal influence in the size of suspended sediment in our study areas. The PIC concentration in dry season is higher than the wet seasons, where the surface PIC concentration is higher than the beneath concentration in both dry and wet seasons, suggesting dissolution of PIC during settle down. The PIC mainly contributes by the fine particle (<10 μm) which does not suffer any seasonal change. The TSM, POC, as well as PIC in suspended sediment in the Gaoping estuary and its plume are mainly contributed by fine particles. Distributions of these fine particles are highly influenced by the tides, but not the season changes. This study shows that the distributions of TSM, POC, as well as PIC in suspended sediments can be known through the characters of the suspended sediment.
目次 Table of Contents
致謝---------------------------------------------------------------------------------I
摘要--------------------------------------------------------------------------------II
ABSTRACT---------------------------------------------------------------------IV
目錄-------------------------------------------------------------------------------VI
圖目錄----------------------------------------------------------------------------IX
表目錄--------------------------------------------------------------------------XIII
第一章、緒論---------------------------------------------------------------------1
1-1前言----------------------------------------------------------------------1
1-2懸浮沉積物之物理特性----------------------------------------------2
1-3懸浮顆粒在河口環境中扮演的角色-------------------------------4
1-4沖淡水結構-------------------------------------------------------------5
1-5河流陸源物質輸出至最後堆積過程-------------------------------8
1-6前人研究---------------------------------------------------------------10
1-7研究目的---------------------------------------------------------------11第二章、研究區域--------------------------------------------------------------12
2-1高屏峽谷河海系統---------------------------------------------------12
2-1-1高屏溪河口-----------------------------------------------------12
2-1-2高屏峽谷--------------------------------------------------------13第三章、材料及方法-----------------------------------------------------------15
3-1採樣時間、位置及方法----------------------------------------------15 3-2基本水文參數---------------------------------------------------------17
3-3不同粒徑之懸浮顆粒樣品------------------------------------------18
3-4 總懸浮顆粒物濃度之測定-----------------------------------------19
3-5顆粒態有機碳之測定------------------------------------------------19
3-6葉綠素a之測定------------------------------------------------------20
第四章、結果與討論------------------------------------------------------------21
4-1高屏海域水文環境---------------------------------------------------21
4-2潮汐對總懸浮物質、顆粒態有機碳與無機碳濃度之影響--------------------------------------------------------------------------------24
4-2-1河口區大潮期間TSM、POC、PIC及Chl-a之時序分布
---------------------------------------------------------------------------24
4-2-2河口區小潮期間TSM、POC、PIC及Chl-a之時序分布
---------------------------------------------------------------------------37
4-3高屏溪沖淡水連續24小時水動力之觀測-----------------------50
4-4漲退潮期間定點觀測------------------------------------------------54
4-5探討大、小潮之間的差異與比較河口區與沖水區之不同 --------------------------------------------------------------------------67
4-6不同粒徑群懸浮顆粒之有機碳及無機碳於乾濕兩季觀測--------------------------------------------------------------------------------73
第五章、結論--------------------------------------------------------------------77參考文獻--------------------------------------------------------------------------79
參考文獻 References
中文部份:
經濟部水利署,2006年
王冑、陳慶生,1987,南海北部之暖心渦流(一)對南海暖心渦流之初步觀測。台灣大學海洋學刊,18,104-113 頁。
何晟銘,2004。河川輸出對高屏海域碳及營養鹽生地化作用之影響。中山大學海洋地質及化學研究所碩士論文,共118 頁。
吳夢麟,2004。高屏海底峽谷與陸棚流場之研究。國立中山大學海洋地質及化學研究所碩士論文,共131 頁。
黃明祥,1993。呂宋海峽兩側之水團交換及碳酸鹽現況。國立中山大學海洋地質及化學研究所碩士論文。共88 頁。
楊鈞沂,2001。高屏溪流域陸源物質之剝蝕與傳輸。國立中山大學海 洋地質及化學研究所碩士論文,共128頁。
劉坤章,1999。從沉積物粒徑分佈來看高屏近岸海域的沉積物傳輸。國立中山大學海洋地質及化學研究所碩士論文,共99頁。





英文部分:
Allen, P.A., 1997. Earth Surface Process. pp. 186-198
Baskaran, M., and Santschi, P.H., 1993. The role of particles and colloids in the transport of radionuclides in coastal environments of Texas. Marine Chemistry, 43: 95-114.
Berner, R.A., 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. The American Journal of Science, 282: 451-473.
Broche, P., Devenon, J.L., Forget, P., Maistre, J.C. de, Naudin, J.J., and Cauwet, G., 1988. Experimental study of the Rhone plume. Part I: physics and dynamic. Oceanologica Acta, 21: 725-738.
Bopp, R.F., Simpson, H.J., Olsen, C.R., Trier, R.M., and Kostryk, N., 1982. Chlorinated hydrocarbons and radionuclide chronologies in sediments of the Hudson River and estuary, New York. Environmental Science and Technology, 16: 666-676.
Bowman, M.J. 1988. Estuarine Fronts. In B. Kjerfve(Ed.) Hydrodynamics of Estuaries, CRC Press, Boca Raton, Florida, 85-132.
Chow, J., Lee, J.S., Liu, C.S., Lee, B.D. and Watkins J.S., 2001. A submarine canyon as the cause of a mud volcano - Liuchieuyu Island in Taiwan. Marine Geology, 176: 55-63.
Dyer, K.R., 1979. Estuaries and estuarine sedimentation. In estuarine hydrography and sedimentation. Cambridge University Press, Cambridge: 1-19.
Elliott, T., 1979. “Clastic Shorelines.” In Sedimentary Environments and Facies, pp. 143-77, ed. H. G. Reading, New York: Elsevier Fairbridge, R. W. 1980 The estuary: it’s definition and geodynamic cycle. In olausson, E. and Cato, I. (eds), Chemistry and biogeochemistry of estuaries. New York: Wiley
Fain, A.M.V., Jay, D.A., Wilson, D.J., Orton, P.M., and Baptista, A.M.,
2001. Seasonal and tidal monthly patterns of particulate matter dynamics in the Columbia River estuary. Estuaries, 24: 770-786.
Feely, R.A., Sarbine, C.L., Takahashi, T., and Wanninkhof, R., 2001. Uptake and storage of carbon dioxide in the ocean: the global CO2 survey. Oceanography, 14: 18-32.
Fox, L.E., 1981. Geochemistry of humic acid during estuarine mixing. In Aquatic and Terrestrial Humic Materials (Christman, R.F. & Gjessing, E.T., eds). Ann Arbor, Michigan, U.S.A., pp.407-462
Garvine, R.W., and Monk, J.D., 1974. Frontal structure of a river plume. Journal of Geophysical Research, 79: 2251-2259.
Gibbs, R.J., 1973. Mechanisms of trace metal transport in rivers. Science, 180: 71-73.
Hedges, J.I., and R.G. Keil, 1995. Sedimentary organic matter preservation: an assessment and speculative aynthesis. Marine Chemistry, 49: 81-115.
Hill, P.S., Sherwood, C.R., Sternberg, R.W., and Nowell, A.R.M., 1994. In situ measurements of particle settling velocity on the northern California continental shelf. Continental Shelf Research I, 14: 1123-1137.
Houghton J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J.,
and Xiaosu, D., 2001. Climate Change 2001: The Scientific Basis
contribution of working group I to the third assessment report of the
Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, 944P.
Inderm&#252;hle, A., Stocker, T.F., Joos, F., Fischer, H., Smith, H.J., Wahlen, M., Deck, B., Mastroianni, D., Tschumi, J., Blunier, T., Meyer, R., and Stauffer, B., 1999. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature, 398: 121-126.
Inman, D.L., Nordstrom, C.E. and Flick R.E., 1976. Current in submarine canyon: An air-sea-land interaction. Annual Review of Fluid Mechanics, 8: 275-310.
Keeling, C.D., and Whorf, T.P., 2004. Atmospheric CO2 records from sites in the SIO air sampling network. In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn.
Kennedy,V.S. (ed), 1984. The Estuary as a Filter. Academic Press, Orlando, Florida,U.S.A.
Lentz, S.J., and Limeburner, R., 1995. The Amazon River Plume during AMASSEDS: Spatial characteristics and salinity variability. Journal of Geophysical Research, 100: 2355-2375.
Leppard, G.G., Flannigan, D.T., Mavrocordatos, D., Marvin, C.H., Bryant, D.W., and McCarry, B.E., 1998. Binding of polycyclic aromatic hydrocarbons by size classes of particulate matter in Hamilton Harbor water. Environmental Science and Technology, 32: 3633-3639.
Lindsay, P., Balls, P.W., and West, J. R., 1996. Influence of tidal range and river discharge on suspended particulate matter fluxes in the Forth Estuary(Scotland). Estuarine, Coastal and Shelf Science, 42: 63-82.
Liu, J. T., Liu, K.J. and Huang, J. C., 2002. The influence of a submarine canyon on the river sediment dispersal and inner shelf sediment movement in southern Taiwan. Marine Geology, 181: 357-386.
Liu, J.T., and Lin, H.L., 2004. Sediment dynamics in a submarine canyon: a case of river-sea interaction. Marine Geology, 207: 55-81.
Liu, J.T., Lin, H.L. and Hung, J.J., 2006. A submarine canyon conduit under typhoon conditions off Southern Taiwan. Deep-Sea Research I, 53: 223-240.
Lyons, W.B., Nezat, C.A., Carey, A.E., and Hicks, D.M., 2002. Organic carbon fluxes to the ocean from high-standing islands. Geology, 30: 39-442.
Martin, J.M., Burton, J.D. and Eisma, D. (eds), 1981. River Inputs to Ocean Systems. United Nations Environment Programme, Geneva, Switzerland.
Milliman J. D. and Meade, R. H. 1983. World wide delivery of river sediment to the ocean. Journal of Geology, 91: 1-21.
Milliman, J.D., Qin, Y-S., Ren, M-E. and Yoshiki, S., 1987. Man’s influence on the erosion and transport of sediment by Asian rivers; the Yellow River (Huanghe) example. Journal of Geology , 95: 751-762.
Milliman, J.D. and Syvitski, J.P.M., 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous river. Journal of Geology, 100: 525-544.
Mulholland, P.J., 1981. Deposition of riverborne organic carbon in floodplain wetlands and deltas. In Flux of Organic Carbon by Rivers to the Oceans, U.S. Department of Energy, CONF-8009140, National Technical Information Service, Springfield, Virginia, U.S.A., pp.142-172.
Neftel, A., Moor, E., Oeschger, H., and Stauffer, B., 1985. Evidence from polar ice cores for the increase in the atmospheric CO2 in the past two centuries. Nature, 15: 45-47.
Paluszkiewicz, T., Curtin, T. B. and Chao, S. Y., 1995. Wind-driven variability of the Amazon River plume on the continental shelf during the peak outflow season. Geo-Marine Letters, 15: 179-184.
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I.,
Bender, M., Chappellaz, J., Davis, M., Delmotte, M., Kotlyakov,
V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., P&#233;pin, L., Ritz, C.,
Saltzman, E., and Stievenard, M., 1999. Climate and atmospheric
history of the past 420,000years from the Vostok ice core, Antarctica.
Nature 399: 429-436.
Ridderinkhof, H., van der Ham, R., and van der Lee, W., 2000. Temporal variations in concentration and transport of suspended sediments in a channel-flat system in the Ems-Dollard Estuary. Continental Shelf Research, 29: 191-257.
Sarmiento, J.L., Murnane, R., and Lequere, C., 1995. Air-Sea CO2 transfer and he Carbon budget of the North Atlantic. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 348: 211-219.
Schl&#252;nz, B., and Schneider, R. R., 2000. Transport of terrestrial organic
carbon to the ocean by rivers: re-estimating flux- and burial rates.
International Journal of Earth Science, 88: 599-606.
Shaw, P.T., 1989. The intrusion of masses into the sea southwest of Taiwan. Journal of Geophysical Research, 4: 18213-1822.
Shimeta, J., Jumars, P. A., 1991. Physical mechanisms and rates of particle capture by suspension feeders. Oceanography and Marine Biology Annual Review, 29: 191-257.
Sholkovitz, E. R., 1976. Flocculation of dissolved organic and inorganic matter during mixing of river water andseawater. Geochimica et Cosmochimica Acta, 40: 831-845.
Sholkovitz, E.R., Boyle, E.A., Price, N.B., 1978. The removal of dissolved humicacids and iron during estuarine mixing. Earth and Planetary Science Letters, 40: 130-136.
Siegenthaler, U., Samiento, J.L., 1993. Atmospheric carbon dioxide and the ocean. Nature, 65: 119-125.
Simpson, H.J., Olsoen, C.R.,Trier, R.M., Williams, S.C., 1976. Man-made radionuclide and sedimentation in the Hudson River estuary. Science, 194: 179-183
Smith, J.N., and Ellis, K.M., 1981. Transport mechanism for Pb-210, Cs-137 and Pu fallout radionuclides through fluvial-marine systems. Geochimica et Cosmochimica Acta: 46: 941-954.
Strickland, J.D.H. and Parson, T.R., 1972. A practical Handbook of Seawater Analysis. Journal of the Fisheries Research Board of Canada: 167.
Stumpf, R.P., Gelfenbaum, G. and Pennock, J.R., 1993. Wind and tidal forcing of a buoyant plume, Mobile Bay, Alabama. Continental Shelf Research, 13: 1281-1301.
Syviski, J.P.M., Asprey, K.W., Clattenburg, D.A. and Hodge, G.D., 1985. The prodelta environment of fjord, suspended particle dynamics. Sedimentology, 32: 83-107.
Turner, A., Millward, G. E., 2002. Suspended Particles: Their Role in Estuarine Biogeochemical Cycles. Estuarine, Coastal and Shelf Science, 55: 857-883.
Uher, G., Hughes, C., Henry, G., Upstill-Goddard, R.C., 2001. Non-conservative maxing behaviour of colored dissolved organic matter in a humic-rich, turbid estuary. Geophysical Research Letters, 28: 09-3312.
Walsh, J. J., 1991. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 350: 53-55.
Welschmeyer, N. A., 1994. Fluormetric analysis of chlorophyll a on the presence of chlorophyll b and pheopigments. American Society of Limnology and Oceanography, 39: 1985-1992.
Wright, L.D., and Coleman, J.M., 1971. Effluent expansion and interfacial mixing in the presence of a salt wedge, Mississippi River delta. Journal of Geophysical Research, 76: 8649-8661.
Wright, L.D., Nittrouer, C.A., 1995. Dispersal of river sediments in coastal seas: six contrasting cases. Estuarine, 18: 213-252.
Yu, H.S., Huang, C.S. and W.J.K., 1991. Morphology and possible origin of the Kaoping submarine canyon head off southwest Taiwan. Acta oceanographica Taiwanica, 28: 19-30.
Yu, H.S., 1993. Contrasting tectonic style of a fore deep with a passive margin: southwest Taiwan and South China. Journal of Petroleum Geology, 28: 97-118.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code