Responsive image
博碩士論文 etd-0908110-144347 詳細資訊
Title page for etd-0908110-144347
論文名稱
Title
以分子動力學及密度泛函理論研究一維氧化鋅奈米結構的機械行為及電子特性
Study on mechanical and electronic properties of one-dimensional zinc oxide nanostructure by Molecular Dynamics and Density Functional Theory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-30
繳交日期
Date of Submission
2010-09-08
關鍵字
Keywords
密度泛函理論、滑移向量、氧化鋅、奈米管、Core-Shell 勢能函數、白金漢勢能函數
Core-Shell potential, Buckingham potential, density functional theory, nanotube, zinc oxide
統計
Statistics
本論文已被瀏覽 5636 次,被下載 13
The thesis/dissertation has been browsed 5636 times, has been downloaded 13 times.
中文摘要
本文利用密度泛函理論 (Density Functional Theory, DFT)及分子動力學理論 (Molecule Dynamics, MD)模擬一維氧化鋅奈米結構的機械性質及電子特性。本文研究分成兩部份:
1.介紹一維氧化鋅奈米管在受到軸向應力拉伸時,其機械性質與電子特性。研究過程中,藉由密度泛函理論計算可以發現最高佔據軌道 (Highest Occupied Molecular Orbital, HOMO)和最低未佔據軌道 (Lowest Unoccupied Molecular Orbital, LUMO )的差值 (Gap)以及Radial Buckling會隨著應變量增加而變小。此外針對鍵長和鍵角的增減則可以知道結構隨著應變量增加而產生的變化,在電荷分布情形上,本文也採用部份電子態密度 (Partial Density of State, PDOS)、鍵級 (Bond Order, BO)以及電子密度差 (deformation density)等結果來進一步分析並了解氧化鋅奈米管在受到軸向應力拉伸時,電子特性的變化。
2.本文經由計算可以得知在以分子動力學搭配白金漢勢能函數 (Buckingham Potential)和Core-Shell 勢能函數來模擬一維氧化鋅奈米管在拉伸的過程中,各種不同的物理量,包含降伏應力、楊氏模數以及原子的滑移向量 (Slip Vector)參數來探討奈米管在受到軸向應力拉伸時的動態行為及結構變化。
Abstract
In this study, we employed density functional theory (DFT) and molecular dynamics (MD) to investigate the mechanical and electronic properties of one-dimensional zinc oxide nanostructure. This study can be arranged into two parts:
In part I: We investigated the mechanical and electronic properties of one-dimensional zinc oxide nanostructure under axial mechanical deformations by density functional theory. In this case, we could find both the highest occupied molecular orbital and the lowest unoccupied molecular orbital gap (HOMO-LUMO gap) and value of radial buckling will decrease linearly with the increase of axial strain. The changes of bond lengths and bond angles show the variation of nanostructure dependence to the increase of axial strain. This study also used partial density of state (PDOS), bond order (BO) and deformation density to analyse the differences of the electronic properties between the zinc oxide nanotubes under axial strain.
In part II: This study, which employed molecular dynamics combines Buckingham and Core-Shell potentials, shows the different physical parameters, such as yield stress, young’s modulus and slip vector to research the mechanical behavior and variation of structure of nanotube under axial strain.
目次 Table of Contents
目錄
目錄 I
圖目錄 III
表目錄 V
中文摘要 VI
英文摘要 VII
第一章 緒論 1
1.1研究目標與動機 1
1.2單壁氧化鋅奈米管材料簡介及文獻回顧 4
1.3 本文架構 7
第二章 理論介紹 8
2.1密度泛函理論(Density Functional Theory, DFT) 8
2.1.1 電子密度(Electric Density) 8
2.1.2 湯馬士-費米模型(Thomas-Fermi model, TF model) 9
2.1.3 霍恩貝格-科恩模型(Hohenberg-Kohn model, HK model) 10
2.1.4 科恩-軒姆模型(Kohn-Sham model, KS model) 10
2.2 分子動力學理論 14
2.2.1 勢能函數(Potential Function) 14
2.2.1.1 白金漢勢能函數(Buckingham Potential Function) 15
2.2.1.2 Core-shell勢能函數 15
2.2.2 運動方程式 17
2.2.3 積分法則 18
2.2.4 時間步階選取 19
2.2.5 溫度修正 20
2.2.5.1 諾斯-胡佛恆溫法(Nosé-Hoover thermostat) 20
2.3數值統計方法 22
2.3.1 鄰近表列數值方法 22
2.3.2 原子級的應力計算方法 24
2.3.3 滑移向量(Slip Vector) 28
2.3.4 徑向分佈函數(Radial Distribution Function, RDF) 30
2.3.5 角關係函數(Angular Correlation Function, ACF) 32
第三章 結果與討論 33
3.1密度泛函理論模擬結果 33
3.1.1 單壁氧化鋅奈米管建構及參數設定 .33
3.1.2 HOMO-LUMO Gap和結構分析 36
3.1.3 電子特性分析 41
3.2分子動力學模擬結果 46
3.2.1 單壁氧化鋅奈米管建構及條件設定 46
3.2.2 在真空中的機械性質分析 46
第四章 結論與建議 56
4.1 結論 56
4.2 建議與未來展望 58
參考文獻 59

圖目錄
圖2-1截斷半徑法示意圖 17
圖2-2局部原子P0的Voronoi體積,如中間灰色區塊所示,其中P1、P2 及P3…等分別為鄰近原子,L為兩原子間之鉛垂線 27
圖2-3局部原子P0的Voronoi體積,相等於Srolovitz體積(圓的體積),其中ai為原子平均半徑 27
圖2-4手扶型之奈米管搜尋鄰近原子之示意圖 29
圖2-5徑向、切線與軸向滑移向量之示意圖 29
圖2-6徑向分佈函數二維示意圖 31
圖2-7角關係函數三維示意圖 32
圖3-1 (4,4)扶手型單壁氧化鋅奈米管物理模型 35
圖3-2 (4,4)扶手型單壁氧化鋅奈米管應力應變曲線與HOMO-LUMO Gap變化 39
圖3-3依原子結構,將單壁氧化鋅奈米管上的鍵結與鍵角分類圖 39
圖3-4 Radial buckling、鍵長與應變之關係圖 40
圖3-5鍵角與應變之關係圖 40
圖3-6 O (30)與Zn (32)原子電荷與應變率之關係圖 43
圖3-7不同應變率下的O (30)與Zn (32)的部分電子態密度 44
圖3-8不同應變率下的鍵級與電子態密度差 45
圖3-9 (11,11)扶手型單壁氧化奈米管物理模型 49
圖3-10單壁氧化鋅奈米管應力、平均滑移向量對應變變係圖 49
圖3-11依原子結構,將單壁氧化鋅奈米管上的鍵結與鍵角分類 50
圖3-12鍵長與應變之關係圖 50
圖3-13鍵角與應變之關係圖 51
圖3-14各應變量其結構形貌圖 53
圖3-15應變量和徑向分佈函數 54
圖3-16應變量和角關係函數 55

表目錄
表2-1白金漢勢能參數 16
表2-2 Core-shell勢能參數 16
表2-3不同系統及運動形式的時間步階選取 19
表3-1扶手型單壁氧化鋅奈米管之管徑、鍵長、電荷轉移比較與鍵結能 35
參考文獻 References
參考文獻
[1] S. Iijima, "Helical microtubules of graphitic carbon", Nature, vol. 354, p. 56-58, 1991.
[2] S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter", Nature, vol. 363, p. 603-605, 1993.
[3] T. W. Ebbesen and P. M. Ajayan, "Large-scale synthesis of carbon nanotubes", Nature, vol. 358, p. 220-222, 1992.
[4] H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, , "Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons", Applied Physics Letters, vol. 72, p. 3282-3284, 1998.
[5] J. S. Qiu, Y. F. Li, Y. P. Wang, T. H. Wang, Z. B. Zhao, Y. Zhou, , "High-purity single-wall carbon nanotubes synthesized from coal by arc discharge", Carbon, vol. 41, p. 2170-2173, 2003.
[6] A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, , "Crystalline ropes of metallic carbon nanotubes", Science, vol. 273, p. 483-487, 1996.
[7] H. M. Cheng, F. Li, X. Sun, S. D. M. Brown, M. A. Pimenta, A. Marucci, , "Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons", Chemical Physics Letters, vol. 289, p. 602-610, 1998.
[8] J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, , "Mechanical properties of carbon nanotubes", Applied Physics a-Materials Science & Processing, vol. 69, p. 255-260, 1999.
[9] R. Ciocan, J. Gaillard, M. J. Skove and A. M. Rao, "Determination of the bending modulus of an individual multiwall carbon nanotube using an electric harmonic detection of resonance technique", Nano Letters, vol. 5, p. 2389-2393, 2005.
[10] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley and C. Dekker, "Electronic structure of atomically resolved carbon nanotubes", Nature, vol. 391, p. 59-62, 1998.
[11] T. W. Odom, J. L. Huang, P. Kim and C. M. Lieber, "Atomic structure and electronic properties of single-walled carbon nanotubes", Nature, vol. 391, p. 62-64, 1998.
[12] P. G. Collins, A. Zettl, H. Bando, A. Thess and R. E. Smalley, "Nanotube nanodevice", Science, vol. 278, p. 100-103, 1997.
[13] M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, , "Single-electron transport in ropes of carbon nanotubes", Science, vol. 275, p. 1922-1925, 1997.
[14] R. S. Ruoff and D. C. Lorents, "Mechanical and thermal-properties of carbon nanotubes", Carbon, vol. 33, p. 925-930, 1995.
[15] H. Xu, R. Q. Zhang, X. H. Zhang, A. L. Rosa and T. Frauenheim, "Structural and electronic properties of zno nanotubes from density functional calculations", Nanotechnology, vol. 18, p., 2007.
[16] X. Q. Wang, B. L. Wang, J. J. Zhao and G. H. Wang, "Structural transitions and electronic properties of the ultrathin sic nanotubes under uniaxial compression", Chemical Physics Letters, vol. 461, p. 280-284, 2008.
[17] Z. G. Wang, X. T. Zu, F. Gao and W. J. Weber, "Atomistic simulation of brittle to ductile transition in gan nanotubes", Applied Physics Letters, vol. 89, p., 2006.
[18] N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, , "Boron-nitride nanotubes", Science, vol. 269, p. 966-967, 1995.
[19] K. Keis, E. Magnusson, H. Lindstrom, S. E. Lindquist and A. Hagfeldt, "A 5% efficient photo electrochemical solar cell based on nanostructured zno electrodes", Solar Energy Materials and Solar Cells, vol. 73, p. 51-58, 2002.
[20] J. Touskova, D. Kindl and J. Tousek, "Preparation and characterization of cds/cdte thin film solar cells", Thin Solid Films, vol. 293, p. 272-276, 1997.
[21] H. C. Chou, A. Rohatgi, N. M. Jokerst, S. Kamra, S. R. Stock, S. L. Lowrie, , "Approach toward high efficiency cdte/cds heterojunction solar cells", Materials Chemistry and Physics, vol. 43, p. 178-182, 1996.
[22] C. Ferekides and J. Britt, "Cdte solar-cells with efficiencies over 15-percent", Solar Energy Materials and Solar Cells, vol. 35, p. 255-262, 1994.
[23] A. Niemegeers and M. Burgelman, "Effects of the au/cdte back contact on iv and cv characteristics of au/cdte/cds/tco solar cells", Journal of Applied Physics, vol. 81, p. 2881-2886, 1997.
[24] P. J. Sebastian and M. Ocampo, "A photodetector based on zncds nanoparticles in a cds matrix formed by screen printing and sintering of cds and zncl2", Solar Energy Materials and Solar Cells, vol. 44, p. 1-10, 1996.
[25] Y. Qin, X. D. Wang and Z. L. Wang, "Microfibre-nanowire hybrid structure for energy scavenging", Nature, vol. 451, p. 809-U805, 2008.
[26] P. X. Gao and Z. L. Wang, "Nanoarchitectures of semiconducting and piezoelectric zinc oxide", Journal of Applied Physics, vol. 97, p., 2005.
[27] X. D. Wang, J. Zhou, J. H. Song, J. Liu, N. S. Xu and Z. L. Wang, "Piezoelectric field effect transistor and nanoforce sensor based on a single zno nanowire", Nano Letters, vol. 6, p. 2768-2772, 2006.
[28] Z. L. Wang and J. H. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays", Science, vol. 312, p. 242-246, 2006.
[29] J. H. He, C. L. Hsin, J. Liu, L. J. Chen and Z. L. Wang, "Piezoelectric gated diode of a single zno nanowire", Advanced Materials, vol. 19, p. 781-+, 2007.
[30] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, , "Room-temperature ultraviolet nanowire nanolasers", Science, vol. 292, p. 1897-1899, 2001.
[31] X. H. Kong, X. M. Sun, X. L. Li and Y. D. Li, "Catalytic growth of zno nanotubes", Materials Chemistry and Physics, vol. 82, p. 997-1001, 2003.
[32] J. Q. Xu, Q. Y. Pan, Y. A. Shun and Z. Z. Tian, "Grain size control and gas sensing properties of zno gas sensor", Sensors and Actuators B-Chemical, vol. 66, p. 277-279, 2000.
[33] B. B. Rao, "Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour", Materials Chemistry and Physics, vol. 64, p. 62-65, 2000.
[34] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, , "A comprehensive review of zno materials and devices", Journal of Applied Physics, vol. 98, p., 2005.
[35] L. C. Tien, P. W. Sadik, D. P. Norton, L. F. Voss, S. J. Pearton, H. T. Wang, , "Hydrogen sensing at room temperature with pt-coated zno thin films and nanorods", Applied Physics Letters, vol. 87, p. 3, 2005.
[36] L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, , "Size dependence of gas sensitivity of zno nanorods", Journal of Physical Chemistry C, vol. 111, p. 1900-1903, 2007.
[37] X. F. Chu, D. L. Jiang, A. B. Djurisic and H. L. Yu, "Gas-sensing properties of thick film based on zno nano-tetrapods", Chemical Physics Letters, vol. 401, p. 426-429, 2005.
[38] G. Sberveglieri, S. Groppelli, P. Nelli, A. Tintinelli and G. Giunta. A novel method for the preparation of nh3 sensors based on zno-in thin-films. 1995: Elsevier Science Sa Lausanne; 1995. p. 588-590.
[39] J. A. Rodriguez, T. Jirsak, J. Dvorak, S. Sambasivan and D. Fischer, "Reaction of no2 with zn and zno: Photoemission, xanes, and density functional studies on the formation of no3", Journal of Physical Chemistry B, vol. 104, p. 319-328, 2000.
[40] L. Q. Jing, B. Q. Wang, B. F. Xin, S. D. Li, K. Y. Shi, W. M. Cai, , "Investigations on the surface modification of zno nanoparticle photocatalyst by depositing pd", Journal of Solid State Chemistry, vol. 177, p. 4221-4227, 2004.
[41] R. M. Wang, Y. J. Xing, J. Xu and D. P. Yu, "Fabrication and microstructure analysis on zinc oxide nanotubes", New Journal of Physics, vol. 5, p., 2003.
[42] P. Liu, G. W. She, Z. L. Liao, Y. Wang, Z. Z. Wang, W. S. Shi, , "Observation of persistent photoconductance in single zno nanotube", Applied Physics Letters, vol. 94, p., 2009.
[43] S. Erkoc and H. Kokten, "Structural and electronic properties of single-wall zno nanotubes", Physica E-Low-Dimensional Systems & Nanostructures, vol. 28, p. 162-170, 2005.
[44] B. Wang, S. Nagase, J. Zhao and G. Wang, "The stability and electronic structure of single-walled zno nanotubes by density functional theory", Nanotechnology, vol. 18, p. 6, 2007.
[45] P. F. Yuan, Z. J. Ding and X. Ju, "Theoretical study on structural and elastic properties of zno nanotubes", Chinese Physics Letters, vol. 25, p. 1030-1033, 2008.
[46] Z. G. Zhu, A. Chutia, R. Sahnoun, M. Koyama, H. Tsuboi, N. Hatakeyama, , "Theoretical study on electronic and electrical properties of nanostructural zno", Japanese Journal of Applied Physics, vol. 47, p. 2999-3006, 2008.
[47] Z. Zhou, Y. Li, L. Liu, Y. Chen, S. B. Zhang and Z. Chen, "Size- and surface-dependent stability, electronic properties, and potential as chemical sensors: Computational studies on one-dimensional zno nanostructures", Journal of Physical Chemistry C, vol. 112, p. 13926-13931, 2008.
[48] S. M. Kaniber, L. Song, J. P. Kotthaus and A. W. Holleitner, "Photocurrent properties of freely suspended carbon nanotubes under uniaxial strain", Applied Physics Letters, vol. 94, p., 2009.
[49] D. Shiri, Y. Kong, A. Buin and M. P. Anantram, "Strain induced change of bandgap and effective mass in silicon nanowires", Applied Physics Letters, vol. 93, p., 2008.
[50] H. L. Chen, S. P. Ju, J. S. Lin, J. Zhao, H. T. Chen, J. G. Chang, , "Electronic properties of a silicon carbide nanotube under uniaxial tensile strain: A density function theory study", Journal of Nanoparticle Research, vol. Impress, p., 2010.
[51] B. L. Wang, J. J. Zhao, J. M. Jia, D. N. Shi, J. G. Wan and G. G. Wang, "Structural, mechanical, and electronic properties of ultrathin zno nanowires", Applied Physics Letters, vol. 93, p. 021918, 2008.
[52] K. W. Hohenberg P., "Inhomogenerous electron gas", Physical Review B, vol. 136, p. 964, 1964.
[53] J. L. S. K.W., "Self-consistent equations including exchange and correlation effects", physical review A, vol. 140, p. 1133, 1965.
[54] D. M. Ceperley and B. J. Alder, "Ground-state of the electron-gas by a stochastic method", Physical Review Letters, vol. 45, p. 566-569, 1980.
[55] J. H. Irving and J. G. Kirkwood, "The statistical mechanical theory of transport processes. Iv. The equations of hydrodynamics
", Journal Chemical Physics
vol. 18, p. 817, 1950.
[56] M. Matsui and M. Akaogi, "Molecular dynamics simulation of the structural and physical properties of the four polymorphs of tio2", Molecular Simulation, vol. 6, p. 239, 1991.
[57] A. V. Bandura and J. D. Kubicki, "Derivation of force field parameters for tio2-h2o systems from a initio calculations", Journal of Physical Chemistry B, vol. 107, p. 11072-11081, 2003.
[58] N. A. Deskins, S. Kerisit, K. M. Rosso and M. Dupuis, "Molecular dynamics characterization of rutile-anatase interfaces", Journal of Physical Chemistry C, vol. 111, p. 9290-9298, 2007.
[59] V. Pischedda, G. R. Hearne, A. M. Dawe and J. E. Lowther, "Ultrastability and enhanced stiffness of similar to 6 nm tio2 nanoanatase and eventual pressure-induced disorder on the nanometer scale", Physical Review Letters, vol. 96, p., 2006.
[60] V. N. Koparde and P. T. Cummings, "Molecular dynamics simulation of titanium dioxide nanoparticle sintering", Journal of Physical Chemistry B, vol. 109, p. 24280-24287, 2005.
[61] O. Teleman, B. Jonsson and S. Engstrom, "A molecular-dynamics simulation of a water model with intramolecular degrees of freedom", Molecular Physics, vol. 60, p. 193-203, 1987.
[62] S. Nose, "A unified formulation of the constant temperature molecular-dynamics methods", Journal of Chemical Physics, vol. 81, p. 511-519, 1984.
[63] S. N. Soni, "Kl2-l-3 x-ray multiplet structure in silicon", Journal of Physics B-Atomic Molecular and Optical Physics, vol. 31, p. 1695-1703, 1998.
[64] N. Chandra, S. Namilae and C. Shet, "Local elastic properties of carbon nanotubes in the presence of stone-wales defects", Physical Review B, vol. 69, p. 094101, 2004.
[65] N. Chandra, S. Namilae and C. Shet, "Local elastic properties of carbon nanotubes in the presence of stone-wales defects", Physical Review B, vol. 69, p., 2004.
[66] N. Tokita, M. Hirabayashi, C. Azuma and T. Dotera, "Voronoi space division of a polymer: Topological effects, free volume, and surface end segregation", Journal of Chemical Physics, vol. 120, p. 496-505, 2004.
[67] D. Srolovitz, K. Maeda, V. Vitek and T. Egami, "Structural defects in amorphous solids statistical-analysis of a computer-model", Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, vol. 44, p. 847-866, 1981.
[68] N. Miyazaki and Y. Shiozaki, vol. 39, p. 606, 1996.
[69] J. A. Zimmerman, C. L. Kelchner, P. A. Klein, J. C. Hamilton and S. M. Foiles, "Surface step effects on nanoindentation", Physical Review Letters, vol. 87, p. art. no.-165507, 2001.
[70] L. H. V. Vlack, "Elements of materials science and engineering", vol. p., 1980.
[71] C. L. Kelchner, S. J. Plimpton and J. C. Hamilton, "Dislocation nucleation and defect structure during surface indentation", Physical Review B, vol. 58, p. 11085-11088, 1998.
[72] R. Komanduri, N. Chandrasekaran and L. M. Raff, "Molecular dynamics (md) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel", International Journal of Mechanical Sciences, vol. 43, p. 2237-2260, 2001.
[73] D. Frenkel. Understaning molecular simulation from algorithms to applications: Academic 1996.
[74] D. C. Rapaport. The art of molecular dynamics simulation: Cambridge university 1995.
[75] E. Tosatti, S. Prestipino, S. Kostlmeier, A. Dal Corso and F. D. Di Tolla, "String tension and stability of magic tip-suspended nanowires", Science, vol. 291, p. 288-290, 2001.
[76] H. Xu, R. Q. Zhang, X. H. Zhang, A. L. Rosa and T. Frauenheim, "Structural and electronic properties of zno nanotubes from density functional calculations", Nanotechnology, vol. 18, p. 6, 2007.
[77] X. H. Song, S. Liu, H. Yan and Z. Y. Gan, "First-principles study on effects of mechanical deformation on outer surface reactivity of carbon nanotubes", Physica E-Low-Dimensional Systems & Nanostructures, vol. 41, p. 626-630, 2009.
[78] A. Ebrahimi, H. Ehteshami and M. Mohammadi, "Density functional calculations of response of single-walled armchair carbon nanotubes to axial tension", Computational Materials Science, vol. 41, p. 486-492, 2008.
[79] H. Zhao, K. Min and N. R. Aluru, "Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension", Nano Letters, vol. 9, p. 3012-3015, 2009.
[80] L. Z. Xu, Y. L. Liu, H. B. Zhou, L. H. Liu, Y. Zhang and G. H. Lu, "Ideal strengths, structure transitions, and bonding properties of a zno single crystal under tension", Journal of Physics-Condensed Matter, vol. 21, p., 2009.
[81] L. Dai, C. H. Sow, C. T. Lim, W. C. D. Cheong and V. B. C. Tan, "Numerical investigations into the tensile behavior of tio2 nanowires: Structural deformation, mechanical properties, and size effects", Nano Letters, vol. 9, p. 576-582, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.116.51.117
論文開放下載的時間是 校外不公開

Your IP address is 18.116.51.117
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code