Responsive image
博碩士論文 etd-0908110-203105 詳細資訊
Title page for etd-0908110-203105
論文名稱
Title
ROGDI活化p53引發肝癌細胞株對抗癌藥物的敏感化與凋亡
ROGDI activates p53 and leads to sensitization for anticancer drug-induced apoptosis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-24
繳交日期
Date of Submission
2010-09-08
關鍵字
Keywords
敏感化、凋亡
p53, ROGDI, apoptosis, sensitization
統計
Statistics
本論文已被瀏覽 5654 次,被下載 0
The thesis/dissertation has been browsed 5654 times, has been downloaded 0 times.
中文摘要
ROGDI是一個未知功能的基因,此基因位於人類第16對染色體上,遺傳編碼區全長為864鹼基對,其蛋白質由287個胺基酸組成,在許多動物中具有保守性。根據NCBI資料庫的預測,ROGDI蛋白具有白胺酸拉鍊功能區。在本實驗室先前的研究中,人類ROGDI會影響不同細胞株的增生速度,另外ROGDI也在動物模式肝纖維化過程中增加表現,並參與肝星狀細胞的活化,影響其增生、移行的能力。而在腦癌細胞株T98G與U251中也發現到,過量表現ROGDI的細胞,p53與p27的mRNA表現量上升。本研究中分別使用癌症抑制基因p53野生型與缺失型的肝癌細胞株,探討細胞過量表現ROGDI時p53的表現情形,與對於處理抗癌藥物的影響,並比較兩者和細胞凋亡的關聯。從結果得知ROGDI與p53的基因表現能影響在肝癌細胞株處理抗癌藥物的反應,並促使其進入細胞凋亡。
Abstract
ROGDI was a novel gene with unknown function, located on human chromosome 16p13.3. The coding region of the gene is 864 bp that encodes 287 amino acids. According to GenBank database, ROGDI contains leucine zipper domain. Previous studies in our laboratory showed that ROGDI increases cell proliferation in cell lines. In addition, overexpression of ROGDI induces p53 and p27 mRNA levels in human glioma cell line T98G and U251. In this study, we use two hepatocellular carcinoma cell lines, Hep G2 and Hep 3B, which contains wild-type and deleted tumor suppressor protein p53 respectively to investigate the expression of p53 and the response of anticancer drugs treatment in ROGDI overexpression cells. In addition, we compare the relation between the cell apoptosis the expression of p53 and ROGDI. Hence, we found that expression of p53 and ROGDI influences the cell response to anticancer drugs and induces apoptosis.
目次 Table of Contents
中文摘要…………………………………………………………………I
Abstractt….………………………………………………………………II
目錄…………………………………………………………………..…III
壹、前言…………………………………………………………………1
一、ROGDI……………………………………………………...…1
二、5-氟尿嘧啶……………………………………………………3
三、順鉑……………………………………………………………4
四、Etoposide………………………………………………………5
五、Doxorubicin………………………………………..……….….6
六、p53蛋白…………………………………………………….…7
七、p27蛋白………………………………...………………….….8
八、p21蛋白………………………………………………….……8
九、細胞凋亡………………………………………………….…...9
貳、實驗目的……………………………………………………………11
參、材料與方法…………………………………………………………12
一、小量質體製備………………………………………………...12
二、構築誘導式表現載體pBIG2i……….……………………….15
三、細胞培養……………………………………………………...16
四、細胞轉染………………………………………………………18
五、抗癌藥物的處理………………………………………………18
六、Total RNA的萃取……………………………………….……19
七、反轉錄作用……………………………………………….…..20
八、聚合酶連鎖反應……………………………………………...21
九、瓊膠電泳分析…………………………………………..…….21
十、西方墨點法…………………………………………………...22
十一、細胞生長曲線……………………………………………... 26
十二、以瓊脂凝膠電泳偵測細胞凋亡…………………………...26
十三、流式細胞儀分析…………………………………………...27
肆、結果……………………………………………….………………..29
伍、討論………………………………………………………………...36
陸、參考文獻…………………………………………………………...40
圖表…………...……………………………………………..……….…48
附錄………………………………………………………………….….65
參考文獻 References
1. Luscher, B., and Larsson, L. G. (1999) The basic region/helix-loop-helix/leucine zipper domain of Myc proto-oncoproteins: function and regulation, Oncogene 18, 2955-2966.
2. Abba, M. C., Hu, Y., Sun, H., Drake, J. A., Gaddis, S., Baggerly, K., Sahin, A., and Aldaz, C. M. (2005) Gene expression signature of estrogen receptor alpha status in breast cancer, BMC Genomics 6, 37.
3. Angrand, P. O., Segura, I., Volkel, P., Ghidelli, S., Terry, R., Brajenovic, M., Vintersten, K., Klein, R., Superti-Furga, G., Drewes, G., Kuster, B., Bouwmeester, T., and Acker-Palmer, A. (2006) Transgenic mouse proteomics identifies new 14-3-3-associated proteins involved in cytoskeletal rearrangements and cell signaling, Mol Cell Proteomics 5, 2211-2227.
4. Menon, R., and Omenn, G. S. (2010) Proteomic characterization of novel alternative splice variant proteins in human epidermal growth factor receptor 2/neu-induced breast cancers, Cancer Res 70, 3440-3449.
5. Hosui, A., Kimura, A., Yamaji, D., Zhu, B. M., Na, R., and Hennighausen, L. (2009) Loss of STAT5 causes liver fibrosis and cancer development through increased TGF-{beta} and STAT3 activation, J Exp Med 206, 819-831.
6. Reif, S., Lang, A., Lindquist, J. N., Yata, Y., Gabele, E., Scanga, A., Brenner, D. A., and Rippe, R. A. (2003) The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression, J Biol Chem 278, 8083-8090.
7. Levine, A. J., Finlay, C. A., and Hinds, P. W. (2004) P53 is a tumor suppressor gene, Cell 116, S67-69.
41
8. Miller, E. (1971) The metabolism and pharmacology of 5-fluorouracil, J Surg Oncol 3, 309-315.
9. Arias, J. L. (2008) Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems, Molecules 13, 2340-2369.
10. Fischer, J. A., Muller-Weeks, S., and Caradonna, S. J. (2006) Fluorodeoxyuridine modulates cellular expression of the DNA base excision repair enzyme uracil-DNA glycosylase, Cancer Res 66, 8829-8837.
11. Longley, D. B., Harkin, D. P., and Johnston, P. G. (2003) 5-fluorouracil: mechanisms of action and clinical strategies, Nat Rev Cancer 3, 330-338.
12. Chu, E., Drake, J. C., Koeller, D. M., Zinn, S., Jamis-Dow, C. A., Yeh, G. C., and Allegra, C. J. (1991) Induction of thymidylate synthase associated with multidrug resistance in human breast and colon cancer cell lines, Mol Pharmacol 39, 136-143.
13. Speelmans, G., Sips, W. H., Grisel, R. J., Staffhorst, R. W., Fichtinger-Schepman, A. M., Reedijk, J., and de Kruijff, B. (1996) The interaction of the anti-cancer drug cisplatin with phospholipids is specific for negatively charged phospholipids and takes place at low chloride ion concentration, Biochim Biophys Acta 1283, 60-66.
14. Tomohiro, T., Sawada Ji, J., Sawa, C., Nakura, H., Yoshida, S., Kodaka, M., Hatakeyama, M., Kawaguchi, H., Handa, H., and Okuno, H. (2002) Total analysis and purification of cellular proteins binding to cisplatin-damaged DNA using submicron beads, Bioconjug Chem 13, 163-166.
15. Chirino, Y. I., and Pedraza-Chaverri, J. (2009) Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity, Exp Toxicol Pathol 61, 223-242.
42
16. Jiang, M., and Dong, Z. (2008) Regulation and pathological role of p53 in cisplatin nephrotoxicity, J Pharmacol Exp Ther 327, 300-307.
17. Asechi, H., Hatano, E., Nitta, T., Tada, M., Iwaisako, K., Tamaki, N., Nagata, H., Narita, M., Yanagida, A., Ikai, I., and Uemoto, S. (2010) Resistance to cisplatin-induced apoptosis via PI3K-dependent survivin expression in a rat hepatoma cell line, Int J Oncol 37, 89-96.
18. Wang, B., Xu, Y. F., He, B. S., Pan, Y. Q., Zhang, L. R., Zhu, C., Qu, L. L., and Wang, S. K. (2010) RNAi-mediated silencing of CD147 inhibits tumor cell proliferation, invasion and increases chemosensitivity to cisplatin in SGC7901 cells in vitro, J Exp Clin Cancer Res 29, 61.
19. Montecucco, A., and Biamonti, G. (2007) Cellular response to etoposide treatment, Cancer Lett 252, 9-18.
20. Sorensen, M., Sehested, M., and Jensen, P. B. (1999) Effect of cellular ATP depletion on topoisomerase II poisons. Abrogation Of cleavable-complex formation by etoposide but not by amsacrine, Mol Pharmacol 55, 424-431.
21. Pui, C. H., Ribeiro, R. C., Hancock, M. L., Rivera, G. K., Evans, W. E., Raimondi, S. C., Head, D. R., Behm, F. G., Mahmoud, M. H., Sandlund, J. T., and et al. (1991) Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia, N Engl J Med 325, 1682-1687.
22. Gajewski, E., Gaur, S., Akman, S. A., Matsumoto, L., van Balgooy, J. N., and Doroshow, J. H. (2007) Oxidative DNA base damage in MCF-10A breast epithelial cells at clinically achievable concentrations of doxorubicin, Biochem Pharmacol 73, 1947-1956.
43
23. Mizutani, H., Tada-Oikawa, S., Hiraku, Y., Kojima, M., and Kawanishi, S. (2005) Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide, Life Sci 76, 1439-1453.
24. Speelmans, G., Staffhorst, R. W., Steenbergen, H. G., and de Kruijff, B. (1996) Transport of the anti-cancer drug doxorubicin across cytoplasmic membranes and membranes composed of phospholipids derived from Escherichia coli occurs via a similar mechanism, Biochim Biophys Acta 1284, 240-246.
25. Nakai, E., Park, K., Yawata, T., Chihara, T., Kumazawa, A., Nakabayashi, H., and Shimizu, K. (2009) Enhanced MDR1 expression and chemoresistance of cancer stem cells derived from glioblastoma, Cancer Invest 27, 901-908.
26. Rigacci, S., Bucciantini, M., Relini, A., Pesce, A., Gliozzi, A., Berti, A., and Stefani, M. (2008) The (1-63) region of the p53 transactivation domain aggregates in vitro into cytotoxic amyloid assemblies, Biophys J 94, 3635-3646.
27. Lu, Q., Tan, Y. H., and Luo, R. (2007) Molecular dynamics simulations of p53 DNA-binding domain, J Phys Chem B 111, 11538-11545.
28. el-Deiry, W. S. (1998) Regulation of p53 downstream genes, Semin Cancer Biol 8, 345-357.
29. Grimmler, M., Wang, Y., Mund, T., Cilensek, Z., Keidel, E. M., Waddell, M. B., Jakel, H., Kullmann, M., Kriwacki, R. W., and Hengst, L. (2007) Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases, Cell 128, 269-280.
30. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K., and Elledge, S. J. (1993) The P21 Cdk-Interacting Protein Cip1 Is a Potent Inhibitor of G1 Cyclin-Dependent Kinases, Cell 75, 805-816.
44
31. Macleod, K. F., Sherry, N., Hannon, G., Beach, D., Tokino, T., Kinzler, K., Vogelstein, B., and Jacks, T. (1995) p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage, Genes Dev 9, 935-944.
32. Cox, L. S. (1997) Multiple pathways control cell growth and transformation: overlapping and independent activities of p53 and p21Cip1/WAF1/Sdi1, J Pathol 183, 134-140.
33. Mahyar-Roemer, M., and Roemer, K. (2001) p21 Waf1/Cip1 can protect human colon carcinoma cells against p53-dependent and p53-independent apoptosis induced by natural chemopreventive and therapeutic agents, Oncogene 20, 3387-3398.
34. Polyak, K., Waldman, T., He, T. C., Kinzler, K. W., and Vogelstein, B. (1996) Genetic determinants of p53-induced apoptosis and growth arrest, Genes Dev 10, 1945-1952.
35. Zha J, W. S., Oh KJ, Wei MC, Korsmeyer SJ. (2000) Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis., Science 290, 5.
36. Cheng, E. H., Kirsch, D. G., Clem, R. J., Ravi, R., Kastan, M. B., Bedi, A., Ueno, K., and Hardwick, J. M. (1997) Conversion of Bcl-2 to a Bax-like death effector by caspases, Science 278, 1966-1968.
37. Vollmer, C. M., Ribas, A., Butterfield, L. H., Dissette, V. B., Andrews, K. J., Eilber, F. C., Montejo, L. D., Chen, A. Y., Hu, B., Glaspy, J. A., McBride, W. H., and Economou, J. S. (1999) p53 selective and nonselective replication of an E1B-deleted adenovirus in hepatocellular carcinoma, Cancer Res 59, 4369-4374.
38. Bressac, B., Galvin, K. M., Liang, T. J., Isselbacher, K. J., Wands, J. R., and Ozturk, M. (1990) Abnormal structure and expression of p53 gene in human hepatocellular carcinoma, Proc Natl Acad Sci U S A 87, 1973-1977.
45
39. Shen, F., Chu, S., Bence, A. K., Bailey, B., Xue, X., Erickson, P. A., Montrose, M. H., Beck, W. T., and Erickson, L. C. (2008) Quantitation of doxorubicin uptake, efflux, and modulation of multidrug resistance (MDR) in MDR human cancer cells, J Pharmacol Exp Ther 324, 95-102.
40. Muller, M., Wilder, S., Bannasch, D., Israeli, D., Lehlbach, K., Li-Weber, M., Friedman, S. L., Galle, P. R., Stremmel, W., Oren, M., and Krammer, P. H. (1998) p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs, J Exp Med 188, 2033-2045.
41. Luo, M. H., and Fortunato, E. A. (2007) Long-term infection and shedding of human cytomegalovirus in T98G glioblastoma cells, J Virol 81, 10424-10436.
42. Seitz, S. J., Schleithoff, E. S., Koch, A., Schuster, A., Teufel, A., Staib, F., Stremmel, W., Melino, G., Krammer, P. H., Schilling, T., and Muller, M. (2010) Chemotherapy-induced apoptosis in hepatocellular carcinoma involves the p53 family and is mediated via the extrinsic and the intrinsic pathway, Int J Cancer 126, 2049-2066.
43. Shi, H., Lambert, J. M., Hautefeuille, A., Bykov, V. J., Wiman, K. G., Hainaut, P., and de Fromentel, C. C. (2008) In vitro and in vivo cytotoxic effects of PRIMA-1 on hepatocellular carcinoma cells expressing mutant p53ser249, Carcinogenesis 29, 1428-1434.
44. Matheu, A., Maraver, A., and Serrano, M. (2008) The Arf/p53 pathway in cancer and aging, Cancer Res 68, 6031-6034.
45. Lowe, S. W., and Lin, A. W. (2000) Apoptosis in cancer, Carcinogenesis 21, 485-495.
46. Smith, M. L., Chen, I. T., Zhan, Q., Bae, I., Chen, C. Y., Gilmer, T. M., Kastan, M. B., O'Connor, P. M., and Fornace, A. J., Jr. (1994) Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen, Science 266, 1376-1380.
46
47. Zhan, Q., Fan, S., Bae, I., Guillouf, C., Liebermann, D. A., O'Connor, P. M., and Fornace, A. J., Jr. (1994) Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis, Oncogene 9, 3743-3751.
48. Mazumder, S., Gong, B., and Almasan, A. (2000) Cyclin E induction by genotoxic stress leads to apoptosis of hematopoietic cells, Oncogene 19, 2828-2835.
49. Lovejoy, K. S., Todd, R. C., Zhang, S., McCormick, M. S., D'Aquino, J. A., Reardon, J. T., Sancar, A., Giacomini, K. M., and Lippard, S. J. (2008) cis-Diammine(pyridine)chloroplatinum(II), a monofunctional platinum(II) antitumor agent: Uptake, structure, function, and prospects, Proc Natl Acad Sci U S A 105, 8902-8907.
50. Dan, S., Tsunoda, T., Kitahara, O., Yanagawa, R., Zembutsu, H., Katagiri, T., Yamazaki, K., Nakamura, Y., and Yamori, T. (2002) An integrated database of chemosensitivity to 55 anticancer drugs and gene expression profiles of 39 human cancer cell lines, Cancer Res 62, 1139-1147.
51. Roy, S., Kaur, M., Agarwal, C., Tecklenburg, M., Sclafani, R. A., and Agarwal, R. (2007) p21 and p27 induction by silibinin is essential for its cell cycle arrest effect in prostate carcinoma cells, Mol Cancer Ther 6, 2696-2707.
52. Li, L. C., Sheng, J. R., Mulherkar, N., Prabhakar, B. S., and Meriggioli, M. N. (2008) Regulation of apoptosis and caspase-8 expression in neuroblastoma cells by isoforms of the IG20 gene, Cancer Res 68, 7352-7361.
53. Collins, J. A., Schandi, C. A., Young, K. K., Vesely, J., and Willingham, M. C. (1997) Major DNA fragmentation is a late event in apoptosis, J Histochem Cytochem 45, 923-934.
47
54. Tomita, Y., Marchenko, N., Erster, S., Nemajerova, A., Dehner, A., Klein, C., Pan, H., Kessler, H., Pancoska, P., and Moll, U. M. (2006) WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization, J Biol Chem 281, 8600-8606.
55. Chipuk, J. E., Bouchier-Hayes, L., Kuwana, T., Newmeyer, D. D., and Green, D. R. (2005) PUMA couples the nuclear and cytoplasmic proapoptotic function of p53, Science 309, 1732-1735.
56. Tang, M. J., and Tai, I. T. (2007) A novel interaction between procaspase 8 and SPARC enhances apoptosis and potentiates chemotherapy sensitivity in colorectal cancers, J Biol Chem 282, 34457-34467.
57. Tai, I. T., Dai, M., Owen, D. A., and Chen, L. B. (2005) Genome-wide expression analysis of therapy-resistant tumors reveals SPARC as a novel target for cancer therapy, J Clin Invest 115, 1492-1502.
58. Troxell, M. L., Bangs, C. D., Lawce, H. J., Galperin, I. B., Baiyee, D., West, R. B., Olson, S. B., and Cherry, A. M. (2006) Evaluation of Her-2/neu status in carcinomas with amplified chromosome 17 centromere locus, Am J Clin Pathol 126, 709-716.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.12.36.30
論文開放下載的時間是 校外不公開

Your IP address is 3.12.36.30
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code