Responsive image
博碩士論文 etd-0909104-153936 詳細資訊
Title page for etd-0909104-153936
論文名稱
Title
黏性流與水平振動圓柱的流場分析
Viscous Flow Around Translating Cylinder
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-23
繳交日期
Date of Submission
2004-09-09
關鍵字
Keywords
黏性流體、振動圓柱、雷諾數、數值方法
viscous flow, numerical method, translating cylinder, Reynolds number
統計
Statistics
本論文已被瀏覽 5717 次,被下載 2009
The thesis/dissertation has been browsed 5717 times, has been downloaded 2009 times.
中文摘要
對於流體通過固定圓柱或是移動圓柱的研究,在水利工程或是熱傳導是相當重要的。本論文利用Primitive-variable method討論流體通過圓柱體之流場研究,對於移動圓柱體的邊界,則是利用轉換式將其邊界固定,此固定邊界與時間無關。有限差分數值模擬與相關的演算系統與可視化α 和β 現象比對證明此方法是精確有效的。論文中,對於流線函數圖、圓柱表面的流場壓力分佈和分離點做討論,而對於移動的圓柱,亦將不同的振幅及頻率作比較,至於 Keule-gan-Carpenter 與流體作用在圓柱上的力之間的關係,在不同的雷諾數之下,也會一併加以論述。
Abstract
Circular cylinders in cross-flow or the motion of circular cylinders in a fluid at rest are especially of interest in fields such as offshore and civil engineering or heat exchanger design in particular. A time-independent finite difference scheme, the basic equations are written in the form of the primitive-variable method, is developed to simulate the viscous flow across a streamwise oscillating circular cylinder. The mov-ing boundary of the oscillating cylinder is mapped to a fixed boundary and the boundary condition, therefore, becomes time independent. The finite difference ap-proximation and algorithm were first validated by the reported numerical simulation and flow visualization of the phenomenon α and phenomenon β for a flow across a fixed circular cylinder. Detailed streamline patterns developed in the process are then described and discussed. Surface pressure distribution and position of separation point versus phases of various stationary and oscillating stages are discussed. The flow be-haviors of various amplitudes of exciting velocity and frequency of moving cylinder are simulated and compared. The relation between Keulegan-Carpenter and the drag force on cylinder during cylinder oscillation was also calculated under various Reynolds number.
目次 Table of Contents
Abstract
中文摘要
Catalog
Catalog of Figures
Notation
Chapter 1 Introduction
1.1 Introduction
1.2 Literature Review
Chapter 2 Mathematical model
2.1 Portrayal of question
2.2 Equations of fluid motion
2.3 Boundary condition
2.4 Initial condition
2.5 Coordinate transformation
2.6 Dimensionless form
Chapter 3 Computational algorithm
3.1 Finite difference method
3.2 Discussion of advection term
3.3 The discussion of time step
3.4 Procedures of numerical computation
3.5 The computational flow chart
3.6 Influence of the grid systems
Chapter 4 Results and discussion
4.1 Pressure distribution in creep viscous flow at

4.2 Flow patterns near the surface of the fixed cylinder
4.3 Flow patterns near the surface of the moving cylinder
4.3.1 Results for Re=100 and KC=5
4.3.2 Results for high-Re-number and low-KC-number
Chapter 5 Conclusion
5.1 Conclusion
5.2 Suggestions
REFERENCE
參考文獻 References
Badr, H. M., Coutanceau, M., Dennis, S. C. R., and Menard, C. 1990 Unsteady flow past a rotating circular cylinder at Reynolds number 103 and 104. J. Fluid Mech., 220, 459-484.
Badr, H. M. Dennis, S. C. R. 1985. Time-dependent viscous flow past an impulsively started rotating and translating circular cylinder. J. Fluid Mech., 158, 447-488.
Bar-Lev, M., Yang, H.T. 1975. Infinite flow field over an impulsively started circular cylinder. J. Fluid Mech., 72, 625-647.
Blasius, H. 1908. Grenzchichten in Flussigkeiten mit Kleiner Reibug. Z. Angew. Math. Phys. NACA TM-1256 56, p. 1.
Bouard, R., and Coutanceau, M. 1980. The early stage of development of the wake behind an impulsively started cylinder for 40 Re . J. Fluid Mech., 101, 583-607.
Braza, M., P. Chassing, H. Haminh, 1986. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder, J. Fluid Mech., 165, pp. 79~130.
Chang, C. C., and Chen, R. T. 1991. A numerical study of flow around an impulsively started circular cylinder by a deterministic vortex method. J. Fluid Mech., 233, 243-263.
Chang, C. C., and Chern, R. L. 1991. Vortex shedding from an impulsively started ro-tating and translating circular cylinder. J. Fluid Mech., 233, 265-298.
Chen, B. F. 1997. Nonlinear hydrodynamic pressures generated by a moving high-rise offshore cylinder Ocean Engng, 24(3), 201-216.
Chen, B. F. 1995. A complete three dimensional nonlinear hydrodynamic analysis of a vertical cylinder during earthquake, part I, a rigid cylinder motion, NSC report.
Christiansen, J. P. 1973. Vortex method for flow simulation. J. Computational Physics 13.
Chwang, A. T. 1978. Hydrodynamic pressures of sloping dams during earthquakes, part II, exact solution. J. Fluid Mech., 67, 343-348.
Chwang, A. T. 1983. Nonlinear hydrodynamic pressure on an accelerating plate. J. Physics Fluids 26, 383-387.
Collins, W. M., and Dennis, S. C. R. 1973a. The initial flow past an impulsively started circular cylinder. Q. J. Mech. Appl. Maths 26, 53-75.
Collins, W. M., and Dennis, S. C. R. 1973b. Flow past an impulsively started circular cylinder. J. Fluid Mech., 60, 105-127.
Coutanceau, M., and Menard, C. 1985. Influence of rotation on the near wake development behind an impulsively started circular cylinder. J. Fluid Mech., 158, 399-446.
Dennis, S. C. R., and Kocabiyik, S. 1991. An asymptotic matching condition for un-steady boundary-layer flows governed by the Navier-Stokes equations. IMA J. Appl. Maths 47, 91-98.
Filler, J. R., Marston, and P. L. and Mih, W. C., 1991. Response of the Shear Layers Separating from a circular cylinder to small-amplitude rotational oscillations, J. Fluid Mech., 231, pp. 481~499.
Hung, T. K., and Chen, B. F. 1990. Nonlinear hydrodynamic pressures on dams. J. Ergng. Mech., ASCE 116, 1372-1391.
Hwang, Robert R., Te-Pu Chiang, and Mau-Tse Chiao, 1986. Time-dependent incom-pressible viscous flow past a circular cylinder, Journal of the Chinese.
Isaacson, M. 1978. Wave runup around large circular cylinder; J. Waterways Port. Coast. and Ocean Div, ASCE, 104, 69-79.
Jain P. C., and Rao K. S., 1969. Numerical solution of unsteady viscous incompressi-ble circular cylinder, Phys. Fluids Suppl. (II)12, 57.
Jordan, and Stanley K. Jacob E. Fromm, 1973. Oscillatory drag, lift, and torque on a circular cylinder in a uniform flow, Phys. Fluids 1972, 15, No. 3, pp. 371~377.
Kovasznay, and L. S. G., 1949. Hot-wire investagation of the wake behind cylinder at low Reynolds number, Proc. R. Soc. Lond. A 198, 174.
Koumoutsakos, and P., Leonard, A. 1993. Improved boundary integral method for in-viscid boundary condition applications. AIAA journal. 31, 401-404.
Koumoutsakos, and P., Leonard, A., Pepin, F. 1994. Boundary conditions for viscous vortex methods. J. of Computational Physics 113, 52.
Koumoutsakos, and P., Leonard, A. 1995. High-resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech., 296, 1-38.
Lienhart 1997. Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers. J. Fluid Mech., 360, 249-271.
Lin, C., Peter D., and Lee S., 1976. Numerical method for separated flow solutions around a Circular Cylinder, AIAA journal. 14, pp.900~907.
Lu, X.-Y., J. Sato, 1996. A numerical study of flow past a rotationally oscillating cir-cular cylinder, J. Fluids and Structures. 10, pp. 829~849.
Mahfouz, F. M., and H. M. Badr, 2000. Flow structure in the wake of a rotation oscil-lating cylinder, J. Fluids Engineering. 122, pp. 290~301.
Pantom, and Renold L. 1996. Imcompressible Flow, pp. 388 ~ 389
Payne, and R. B. 1958. Calculations of unsteady viscous flow past a circular cylinder. J. Fluid Mech., 4, 81-86.
Prandtl, and W. 1925. The magnus effect and windpowered ships. Wissenschaften 13, 93-108.
Proudman, I., & J. R. A. Pearson, 1957. Expansions at small Reynolds number for the flow past a sphere and a circular cylinder, J. Fluid Mech., 2, 237 ~ 262.
Schaefer, John W., and Salamon Eskinazi, 1958. An analysis of the vortex street gen-erated in a viscous fluid, J. Fluid Mech., 6, 241~260.
Smith, P. A., Stansby, and P. K. 1988. Impulsively started flow around a circular cyl-inder by the vortex method. J. Fluid Mech., 194, 45-77.
Ta Phuoc Loc 1980. Numerical analysis of unsteady secondary vortices generated by an impulsively started circular cylinder. J. Fluid Mech., 100, 111-128.
Ta Phuoc Loc, Bouard, R. 1985. Numerical solution of the early stage of the unsteady viscous flow around a circular cylinder : a comparison with experimental visuali-zation and measurement. J. Fluid Mech., 160, 93-117.
Teissie-Solier, M., 1931. These Doctorat-es-Science, Universite de Toulouse.
Thoman, D. C., and Szewczyk A. A., 1969, Time dependent viscous flow over a circular cylinder, Phys. Fluids Suppl., 2, 79~86.
Tokumaru, P. T. and Dimotakis, P. E., 1991. Rotary oscillation control of a cylinder wake, J. Fluid Mech., 224, pp.77~90.
Tritton, D. J., 1971. A note on vortex street behind circular cylinders at low Reynolds numbers, J. Fluid Mech., 45, pp. 203-208.
Wang, C.-Y. 1968 On high-frequency oscillatory viscous flows. J. Fluid Mesh. 32, 55-68.
Wang, X., and Dalton, C. 1991. Numerical solution for impulsively started and decelerated viscous flow past a circular cylinder. Intl J. Numer. Method Fluids, 12, 383-400.
Williamson, C. H. K. 1985 Sinusoidal flow relative to circular cylinders. J. Fluid Mesh. 155, 141-17
Wu, J. C. 1976. Numerical boundary conditions for viscous flow problems. AIAA Journal. 14, 1042-4049.
Wu, J. M., Mo, J. D., and Vakili, A. D., 1989. On the wake of a circular cylinder with rotational oscillations, AIAA-89-1024.
Wu, J. Z., Wu, X., Ma, H., Wu, and J. M. 1995. Dynamic vorticity condition : theory and numerical implementation. Intl J. Numer. Method In Fluids
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code