Responsive image
博碩士論文 etd-0909104-170854 詳細資訊
Title page for etd-0909104-170854
論文名稱
Title
14-3-3 gamma蛋白在人類惡性腦瘤中的表現
Expressions of 14-3-3 gamma in Human Malignant Brain Tumors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-28
繳交日期
Date of Submission
2004-09-09
關鍵字
Keywords
腦瘤
14-3-3 gamma
統計
Statistics
本論文已被瀏覽 5692 次,被下載 0
The thesis/dissertation has been browsed 5692 times, has been downloaded 0 times.
中文摘要
14-3-3 proteins在細胞中扮演相當重要的角色,影響許多細胞的作用機制包括:細胞週期的進行、細胞凋亡及細胞內訊號傳遞等。人類的14-3-3 proteins至少包含有7種 isoforms,其中的14-3-3 gamma不僅在腦部含量豐富,而且表現在許多神經系統疾病患者的腦脊液中。儘管14-3-3 gamma在腦部具有重要生理功能,但是目前尚無14-3-3 gamma在腦瘤形成機制中所扮演角色之報告。因此,此本研究利用即時定量聚合酵素連鎖反應、反轉錄聚合酵素連鎖反應、西方墨點法、免疫組織染色及等技術,對三種腦瘤細胞株T98G、U87-MG、U251及4個正常腦部組織、24個星狀細胞瘤、14個神經膠母細胞瘤、2個寡樹突膠質細胞瘤、1個室管膜瘤檢體進行14-3-3 gamma基因及其表現之檢測。實驗結果發現:在三種腦瘤細胞株中,14-3-3 gamma mRNA表現比正常腦部組織高。但是14-3-3 gamma 蛋白質表現則比正常腦部組織低。在腦瘤組織方面,24個星狀細胞瘤檢體中,14-3-3 gamma mRNA的表現比正常的腦部組織多的有20個(83%),14-3-3 gamma 蛋白質的表現比正常的腦部組織多的有9個(37%)。全部14個神經膠母細胞瘤檢體,14-3-3 gamma mRNA的表現均比正常的腦部組織高(100%),14-3-3 gamma 蛋白質的表現比正常的腦部組織高的有9個(64.3%)。同時也發現在神經膠母細胞瘤中14-3-3 gamma 蛋白質表現量比星狀細胞瘤高出許多。至於星狀細胞瘤及神經膠母細胞瘤檢體的基因組DNA上基因數copy number均比正常腦組織高。因此,由本研究結果顯示14-3-3 gamma可能在惡性腫瘤生成的過程中扮演重要角色。
Abstract
The family of 14-3-3 proteins is crucial for various physiological cellular processes such as signaling, cell growth, division, differentiation, and apoptosis. One of the 14-3-3 proteins members, 14-3-3 gamma, is abundantly expressed in brain and had been detected in the cerebrospinal fluid of
patients with different neurological disorders. Although 14-3-3 gamma played critical physiological or pathological role in brain, it has not been reported on brain tumorigenesis. To test expression of 14-3-3 gamma in brain tumor, 3 brain tumor cell lines and 4 normal brain tissues, 24 astrocytoma, 14 glioblastoma mutiform, 2 oligodenroglioma, 1 ependymoma were analyzed using RT-PCR, western blotting, immunohistochemistry, real-time quantitative PCR. The study found that the expressions of 14-3-3 gamma mRNA in all of tumor three cell lines was greater than normal brain tissue, but the 14-3-3 gamma proteins expressed were lower than normal brain tissue. In brain tumor tissues, higher 14-3-3 gamma mRNA expression was detected in 20 of 24 astrocytoma (83%) and higher 14-3-3 gamma protein expression was detected in 9 of 24 astrocytoma (37%). The expression of 14-3-3 gamma mRNA is higher than normal brain tissue in all 14 glioblastoma multiforme (100%), and the 14-3-3 gamma protein was expressed higher in 9 of 14 glioblastoma multiforme than normal brain tissue (64.3%). Besides, the 14-3-3 gamma protein expressed much higher in glioblastoma multiforme than astrocytoma .The copy number of the 14-3-3 gamma gene was higher in astrocytoma and glioblastoma multiforme than normal brain tissue. Thus, this study evidenced that the 14-3-3 gamma protein may play a crucial role during tumorigenesis of brain tumors.
目次 Table of Contents
目 錄
壹、緒論 …………………………………………………p.1
一、前言 …………………………………………………p.1
二、腦瘤 …………………………………………………p.2
三、14-3-3 proteins……………………………………p.6
貳、研究目的 ……………………………………………p.10
參、材料與方法 …………………………………………p.11
一、細胞 …………………………………………………p.11
二、檢體 …………………………………………………p.11
三、反轉錄聚合酵素連鎖反應(Reverse transcription-
polymerase chain reaction;RT-PCR) ………………p.11
四、西方墨點法(Western Blot Analysis)…………p.13
五、免疫組織染色(Immunohistochemistry) …………p.16
六、Real-time quantitative PCR ……………………p.17
七、定序 …………………………………………………p.18
肆、結果 …………………………………………………p.20
一、14-3-3 gamma在正常腦部組織的表現 ……………p.20
二、14-3-3 gamma 在腦瘤細胞株的表現………………p.20
三、14-3-3 gamma 在腦瘤組織的表現…………………p.20
四、14-3-3 gamma gene copy number…………………p.21
五、定序結果 …………………………………………p.21
六、免疫組織染色結果 …………………………………p.22
伍、討論 …………………………………………………p.23
陸、參考文獻 ……………………………………………p.24
柒、圖表 …………………………………………………p.35
圖 表 目 錄
表一 人類的14-3-3 isoforms 及其特異性 ………… p.35
圖一 14-3-3 proteins的作用模式圖 …………………p.36
圖二 14-3-3 proteins在細胞週期的角色 ……………p.37
圖三 14-3-3 proteins在apoptosis的角色……………p.38
圖四 14-3-3 proteins在細胞信號傳遞的角色 ………p.39
圖五 正常腦部組織中14-3-3 gamma mRNA及蛋白質的
表現 ……………………………………………… p.40
圖六 腦瘤細胞株中14-3-3 gamma mRNA及蛋白質的表現p.41
圖七 腦瘤組織中14-3-3 gamma mRNA的表現 …………p.42
圖八 腦瘤組織中14-3-3 gamma 蛋白質的表現 ………p.43
圖九 腦瘤組織中14-3-3 gamma mRNA及蛋白質表現之定量結
果 ……………………………………………p.44
圖十 腦瘤及正常腦部組織中14-3-3 gamma gene copy
number之比較………………………………………p.46
圖十一 14-3-3 gamma mRNA及蛋白質在astrocytoma 及
glioblastoma multiforme中的表現……………p.47
圖十二 定序結果…………………………………………p.48
圖十三 免疫組織染色結果-glioblastoma multiforme
…………………………………………………p.49
參考文獻 References
陸、參考文獻
林瑞雄,原發性腦瘤流行病學研究 政府研究資訊系統,Aug. 1995

黃祖源,腦腫瘤之簡介與治療,高醫醫訊,22(7):172-186,2002

許世昌,新編解剖生理學,永大:260-267, 2000

陳冠助,腦瘤的生化特性及其分類,國防醫學,24:365-368,1997

陳建民,人類乳癌中14-3-3 gamma蛋白過量表現的研究,國立中山
大學學位論文, 2004

Aitken, A., Collinge, D.B., van Heusden, B.P., Isobe, T., Roseboom, P.H., Rosenfeld, G., Soll, J. 14-3-3 proteins: a highly conserved,widespread family of eukaryotic proteins. Trends Biochem.Sci., 17:498–501, 1992

Autieri, M.V. Inducible expression of the signal transduction protein 14-3-3g in injured arteries and stimulated human vascular smooth muscle cells. Experimental and Molecular Pathology, 76:99–107, 2004
Autieri, M.V., Mu, A., Carbone, C. Expression of allograft inflammatory factor-1 (AIF1) is a marker of activated human VSMC andarterial injury. Arterioscler. Thromb. Vasc. Biol., 20:1737–1744, 2000

Autieri, M.V., Haines, D.S., Romanic, A.M., Ohlstein, E.H., 1996. Expressionof 14-3-3g in injured arteries and growth factor and cytokinestimulated human vascular smooth muscle cells. Cell Growth Differ.,7:1453–1460, 1996

Baxter, H.C., Fraser, J.R., Liu, W.G., Forster, J.L., Clokie, S., Steinacker, P., Otto, M., Bahn, E., Wiltfang, J., Aitken, A. Specific 14-3-3 isoform detection and immunolocalization in prion diseases. Biochem. Soc. Trans.,30:387–391, 2002

Boston, P. F., Jackson, P. & Thompson, R. J. Human 14-3-3 protein: radioimmunoassay, tissue distribution, and cerebrospinal fluid levels in patients with neurological disorders. J. Neurochem., 38:1475–1482, 1982

Braselmann, S., McCormick, F. Bcr and Raf form acomplex in vivo via 14-3-3 proteins. EMBO J., 14:4839–4848, 1995

Brunet, A., Kanai, F., Stehn, J., Xu, J., Sarbassova, D., Frangioni, J.V., Dalal, S.N., DeCaprio, J.A., Greenberg, M.E., Yaffe, M.B. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J. Cell Biol., 156:817–828, 2002

Bunney, T. D., van den Wijngaard, P. W., de Boer, A. H. 14-3-3 protein regulation of proton pumps and ion channels. Plant Mol. Biol., 50:1041–1051, 2002

Chen, X.Q., Chen, J.G., Zhang, Y., Wen, W., Hsiao, L., Yu, C.H. 14-3-3 is upregulated by in vitro ischemia and binds to protein kinase Raf in primary cultures of astrocytes. GLIA, 42:315–324, 2003

Collins, V. P. Progression as exemplified by human astrocytic tumors. Semin. CancerBiol., 9: 267–276, 1999
Craparo, A., Freund, R. &Gustafson, T. A. 14-3-3ε interacts with the insulin-like growth factor I receptor and insulin receptor substrate I in a phosphoserine-dependent manner. J. Biol. Chem., 272:11663–11669, 1997

Dent, P., Jelinek, T., Morrison, D.K., Weber, M.J., Sturgill, T.W. Reversal of Raf-1 activation by purified and membrane-associated protein phosphatases. Science, 268:1902–1906, 1995

Fountoulakis, M., Cairns, N. & Lubec, G. Increased levels of 14-3-3γ and ε proteins in brain of patients with Alzheimer’s disease and Down syndrome. J. Neural. Transm. Suppl., 57:323–335, 1999

Fu, H., Subramanian, R.R., Masters, S.C. 14-3-3 proteins: structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol., 40:617–647, 2000

Hermeking, H., Lengauer, C., Polyak, K., He, T.C., Zhang, L., Thiagalingam, S., Kinzler, K.W. and Vogelstein, B. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol.Cell, 1:3-11,1997

Hermeking, H., The 14-3-3 cancer connection. Nature Reviews in Neuroscience, 3:931-943, 2003

Hsich, G., Kenney, K., Gibbs, C. J., Lee, K. H. & Harrington,M. G. The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N. Engl. J. Med. 335, 24–30, 1996

Ishii, N., Maier, D., Merlo, A., Tada, M., Sawamura, Y., Diserens, A. C., and Van Meir, E. G. Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol., 9: 469–479, 1999


Kozmik, Z., Sure, U., Ruedi, D., Busslinger, M., Aguzzi, A. Deregulatedexpression of PAX5 in medulloblastoma. Proc. Natl. Acad. Sci. USA, 92(12):5709-5713, 1995

Liu, Y., Elly, C., Yoshida, H., Lipkowitz, S., Altman, A. Serine phosphorylation of Cbl induced by phorbol ester enhances its association with 14-3-3 proteins in T cells via a novel serine-rich 14-3-3-binding motif. J. Biol.Chem., 272:9979–9985, 1997

Moore, B. E., Perez, V. J. in Physiological and Biochemical Aspects of Nervous Integration (ed. Carlson, F. D.) 343–359

Muslin, A. J., Tanner, J. W., Allen, P. M. & Shaw, A. S. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell, 84:889–897, 1996

Muslin, A. J.,Xing, H. 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cell Signal.,12:703–709,2000

Nakanishi, K., Hashizume, S., Kato, M., Honjoh, T., Setoguchi,Y. and Yasumoto, K. Elevated expression levels of the 14-3-3 family of proteins in lung cancer tissues. Hum. Antib., 8:189-194, 1997

Pawson, T., Scott, J. D. Signaling through scaffold, anchoring,and adaptor proteins. Science, 278:2075–2080, 1997

Peyril, A., Weitzdoerfer, R., Gulesserian, T., Fountoulakis, M.& Lubec G. Aberrant expression of signaling-related proteins. 14-3-3γ and RACK1 in fetal Down syndrome brain (trisomy21). Electrophoresis, 23:52–157, 2002

Pillai, A.A., Bhattacharya, R.N., Radhakrishnan, V.V., Banerjee, M., Molecular signatures of cell cycle transcripts in the pathogenesis of glial tumors. J. Carcinog, 3(1):11, 2004

Prasad, G.L., Valverius, E.M., McDue, E. and Cooper, H.L. Complementary DNA cloning of a novel epithelial cell marker protein, HME1, that may be down-regulated in neoplastic mammary cells. Cell Growth Differ., 3:507-513, 1992

Rasheed, B. K. A., Wiltshire, R. N., Bigner, S. H., and Bigner, D. D. Molecularpathogenesis of malignant gliomas. Curr. Opin. Oncol., 11: 162–167, 1999

Rathore, A., Kamarajan, P., Mathur, M., Sinha, S., and Sarkar, C. Simultaneous alterations of retinoblastoma and p53 protein expression in astrocytic tumors. Pathol.Oncol. Res., 5: 21–27, 1999

Rittinger, K., Budman, J., Xu, J., Volinia, S., Cantley, L.C., Smerdon, S.J., Gamblin, S..J, Yaffe, M.B. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol. Cell,4(2):153-66, 1999
Rosenquist, M., Sehnke, P., Ferl, R.J., Sommarin, M. and Larsson,C. Involvement of 14-3-3 proteins in the osmotic regulation of H+-ATPase in plant plasma membranes. J. Mol. Evol., 51:446-458, 2000

Rosenquist, M., Alsterfjord, M., Larsson, C. and Sommarin, M. Data mining the Arabidopsis genome reveals fifteen 14-3-3 genes. Expression is demonstrated for two out of five novel genes. Plant Physiol., 127:142-149, 2001

Sano, T., Asai, A., Mishima, K., Fujimaki, T., and Kirino, T. Telomerase activity in 144 brain tumours. Br. J. Cancer, 77: 1633–1637,1998

Seimiya, H., Sawada, H., Muramatsu, Y., Shimizu, M., Ohko, K., Yamane, K., Tsuruo, T. Involvement of 14-3-3 proteins in nuclear localization of telomerase. EMBO J., 19:2652–2661, 2000

Vercoutter-Edouart, A.S., Lemoine, J., Le, Bourhis, X., Louis, H., Boilly, B., Nurcombe, V., Revillion, F., Peyrat, J.P., Hondermarck, H. Proteomic analysis reveals that 14-3-3sigma is down-regulated in human breast cancer cells. Cancer Res., 61:76-80, 2001

Wang, W., Shakes, D. C. Molecular evolution of the 14-3-3 protein family. J. Mol. Evol., 43: 384–398, 1996

Wechsler-Reya, R., Scott, M.P. The developmental biology of braintumors. Annu. Rev. Neurosci, 24:385-428, 2001

Yaffe, M. B. et al. The structural basis for 14-3-3: phosphopeptide binding specificity. Cell, 91:961–971, 1997

Yaffe, M.B. How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Letters, 513:53-57, 2002

Yokota, N., Aruga, J., Takai, S., Yamada, K., Hamazaki, M., Iwase, T., Sugimura, H., Mikoshiba, K. Predominant expression of human zic incerebellar granule cell lineage and medulloblastoma. Cancer Res., 56(2):377-383, 1996

Zha, J., Harada, H., Yang, E., Jockel, J., Korsmeyer, S.J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 notBCL-XL. Cell, 87:619–628, 1996
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.93.210
論文開放下載的時間是 校外不公開

Your IP address is 3.145.93.210
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code