Responsive image
博碩士論文 etd-0909109-171012 詳細資訊
Title page for etd-0909109-171012
論文名稱
Title
高屏溪顆粒態碳與氮之輸出及其在鄰近海域之埋藏
Exports of Particulate Carbon and Nitrogen from the Gaoping River and Their Burial in the Associated Coastal Sea
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
111
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-10
繳交日期
Date of Submission
2009-09-09
關鍵字
Keywords
高屏溪、高屏海域、埋藏、收支預算
NBE, CBE, PN, PC
統計
Statistics
本論文已被瀏覽 5699 次,被下載 2039
The thesis/dissertation has been browsed 5699 times, has been downloaded 2039 times.
中文摘要
本研究主要目的在探討高屏河海系統中碳氮之輸出入及收支預算 ( budget )。高屏溪下游溶解態物質濃度隨豐枯水季呈現豐水期低、枯水期高的現象,主因豐水期高流量造成的稀釋效應所致。而顆粒態物質濃度與溶解態物質濃度有鏡像關係,主要是受豐水期雨水、風化沖刷及高流量造成底部沉積物再懸浮的影響,濃度較枯水期高。由高屏溪輸出的總懸浮顆粒 ( TSM )、顆粒態有機碳 ( POC ) 及顆粒態氮 ( PN ) 在豐枯水季分別是以10 – 63 及3 – 10 μm為主要傳輸粒徑,顆粒態無機碳 ( PIC ) 則以10 – 63 μm為主,無豐枯水季差異。在高屏溪的顆粒態碳氮的輸出通量上,POC於研究期間的年輸出通量為1.88 × 1010 mol C yr-1,PIC為1.04 × 1010 mol C yr-1,PN為1.07 × 109 mol N yr-1,其中,河川輸出的顆粒態碳 ( PC ) 中,POC佔64 %,PIC佔36 %。
高屏海域沉積物顆粒粒徑幾乎小於63 μm,離岸越遠顆粒越細,這是由於粗顆粒在進到海洋後會迅速沉降,且細顆粒易受沿岸流、波浪及潮汐的作用,輸送至較遠地方沉降。在研究區域中,PC的平均埋藏通量為2.25 mg cm-2 yr-1,PN為0.27 mg cm-2 yr-1,而研究區域中PC的總埋藏量為5.7 × 109 mol C yr-1 ( 6.84 × 104 ton C yr-1 ),PN為1.0 × 108 mol N yr-1 ( 1.41 × 104 ton N yr-1 ),其中POC略高於PIC,佔58 %,PIC佔42 %。
由高屏峽谷岩心沉積物顯示離岸越近的測站受高屏溪輸出物質影響較顯著,沉積環境變動快速且不穩定,尤其是在颱風事件發生時,影響更為顯著;離岸較遠的測站受高屏溪影響較小,沉積環境也較為穩定,變化亦較一致。而高屏峽谷兩側陸棚的岩心沉積物受沿岸流場影響,以致於峽谷以北受到向北流場將高屏溪輸出的沉積物向北傳輸的影響;而峽谷以南因小琉球的地質環境可能會影響PIC的濃度,但整體而言,岩心沉積物中的POC、PN隨岩心深度遞減,孔隙水中的溶解態有機碳 ( DOC ) 、溶解態有機氮 ( DON ) 、溶解態無機碳 ( DIC ) 及溶解態無機氮 ( DIN ) 隨岩心深度遞增,而岩心沉積物中的黏土顆粒含量、POM、POC/PN及孔隙水中的DOC與DIC分布有隨離岸距離而增加的趨勢。
高屏海域碳氮的埋藏效率可經由研究區域中岩心沉積物顆粒態物質之埋藏通量及溶解態物質之擴散通量推算,本研究中高屏海域碳的埋藏效率介於50 – 85 %,氮的埋藏效率介於30 – 95 %。而高屏海域沉積的碳氮,若其來源僅考慮河川輸入則有23.4 % 的碳及20 % 的氮沉積,若進一步考慮生物淨生產力所產生的碳氮來源則有3.6 % 的碳及0.9 % 的氮沉積,顯示大部分輸入研究區域的碳氮會在水體消散或離開高屏海域至更深的海域沉積或埋藏。
Abstract
This study investigates the exports , deposition rates and budgets of particulate carbon and nitrogen in the Gaoping river-sea system. Concentrations of dissolved materials in the Gaoping River ( GPR ) downstream were generally lower in the wet season than in the dry season due to the dilution effect of runoff. However, concentrations of particulate matters were higher in the wet season than in the dry season, arisen largely from high physical and chemical weathering rates in the wet season. Total suspended matters ( TSM ), particulate organic carbon ( POC ) and particulate nitrogen ( PN ) in the GPR existed mainly in 10-63 μm particles during the wet season and in 3-10 μm particles during the dry season. Particulate inorganic carbon ( PIC ), however, was associated with different particle sizes and its pattern was no significant difference between dry and wet seasons. The GPR carried about 1.88 × 1010 mol C yr-1 POC, 1.04 × 1010 mol C yr-1 PIC and 1.07 × 109 mol N yr-1 PN into the Gaoping coastal sea during the study period. The total particulate carbon was approximately consisted of 64 % POC and 36 % PIC.
Distributions of particle sizes in Gaoping coastal sediments were largely < 63 μm as fine particles were generally carried by the coastal current, wave, tide and deposited on places away from the coastal line. The mean burial flux was 2.25 mg cm-2 yr-1 for particulate carbon ( PC ) and 0.27 mg cm-2 yr-1 for PN, equivalent to 5.7 ×109 mol C yr-1 ( 6.84 ×104 ton C yr-1 ) for PC and 1.0 × 108 mol N yr-1 ( 1.41 × 103 ton N yr-1 ) for PN in the study area. The buried PC was consisted of 58 % POC and 42 % PIC.
The geochemical features of core sediments in the Gaoping Submarine Canyon ( GPSC ) show that the sedimentation was not steady in places near the canyon head affected obviously by extreme events and those cores were not used for determining sedimentation rates. In addition to GPSC, the shelf on the northern side of GPSC was apparently prominent in receiving river borne sediments. The southern shelf sediment of GPSC, however, was significantly influenced by Liuchiu Islet and showed relatively high concentrations of PIC. In general, concentrations of particulate organic matters ( POM ) in sediments decreased as the core depth increased, but dissolved organic matters ( DOM ) and dissolved inorganic matters ( DIM ) in pore water increased as the core depth increased. The contents of clay, POM and POC/PN in sediments and concentrations of dissolved organic and inorganic carbon in pore water increased as the distance of sampling station increased from the coastal line.
The burial efficiency ( BE ) of carbon and nitrogen was estimated from the burial fluxes of particulate matters in core sediments and the diffusion fluxes of dissolved materials across the sediment-water interface. The BE of carbon and nitrogen ranged from 50 % to 85 % ( ave. 84 % ) and from 30 % to 95 % ( ave. 45 % ), respectively in the Gaoping coastal sea. The deposited carbon and nitrogen account for only 23.4 % total PC and 20 % total PN derived from the river loads or 3.6 % total PC and 0.9 % total PN derived from the river loads and the net ecosystem production ( NEP ). The results imply that most particulate carbon and nitrogen derived either from the Gaoping River or NEP may be partly recycled in the water column or largely moved off the study area to the deeper ocean.
目次 Table of Contents
致謝 I
摘要 II
Abstract IV
目錄 VII
圖目錄 IX
表目錄 XII
第一章 前言 1
第二章 研究區域 4
2.1. 高屏溪 4
2.2. 高屏海底峽谷 5
2.3. 高屏陸棚與陸坡 6
第三章 材料及方法 9
3.1. 採樣時期、位置及方法 9
3.2. 實驗方法 9
3.3. 高屏海域溶解及顆粒態物質之收支預算 ( budget ) 15
第四章 結果與討論 22
4.1. 高屏溪下游陸源物質之時序分布及輸出通量 22
4.2. 高屏海域之粗生產力、呼吸率與淨生產力 35
4.3. 高屏海域表層沉積物物質之分布及埋藏通量 37
4.4. 高屏海域岩心沉積物及孔隙水中物質之分布 45
4.5. 高屏海域碳氮之收支預算 ( budget ) 77
第五章 結論 88
參考文獻 91
中文部份 91
英文部份 93
參考文獻 References
中文部份
中央氣象局,http://www.cwb.gov.tw/
經濟部水利署,http://www.wra.gov.tw/default.asp
王有傑,2005,高屏近岸與南海北部海域有機碳代謝之時空變化。中山大學海洋地質及化學研究所碩士論文,共134頁。
吳孟麟,2004,高屏海底峽谷與陸棚流場之研究。中山大學海洋地質及化學研究所碩士論文,共131頁。
沈宥君,2008,台灣海峽南部TEP分布之探討。中山大學海洋地質及化學研究所碩士論文,共129頁。
何晟銘,2004,河川輸出對高屏海域碳及營養鹽生地化作用之影響。中山大學海洋地質及化學研究所碩士論文,共118頁。
許峻嵐,2000,高屏海域沉積物重金屬之分布與污染史。中山大學海洋地質及化學研究所碩士論文,共133頁。
楊鈞沂,2001,高屏溪流域陸源物質之剝蝕與傳輸。中山大學海洋地質及化學研究所碩士論文,共127頁。
經濟部水資源局,2001,中華民國九十年台灣水文年報。
經濟部水資源局,2007,中華民國九十六年台灣水文年報。
蔡聖賢,2008,台灣東部黑潮海域氮與磷溶解態物種之分佈。中山大學海洋地質及化學研究所碩士論文,共95頁。

英文部份
Berner, R. A., 1980. Early diagenesis : A theoretical approach. Princeton University Press. Priceton, NJ, 241 pp.
Bhushan, R., Dutta, K. and Somayajulu, B. L. K., 2001. Concentrations and burial fluxed of organic and inorganic carbon on the eastern margins of the Arabian Sea. Marine Geology 78, 95 – 113.
Boudreau, B. P., 1997. Diagenetic models and their implementation : modeling transport and reactions in aquatic sediments. Springer, Berlin, Heidelberg, NY, 414 pp.
Brunneg&#229;rd, J., Grandel, S., Stahl, H., Tengberg, A. and Hall, P. O. J., 2004. Nitrogen cycling in deep-sea sediments of the Porcupine Abyssal Plain, NE Atlantic. Progress in Oceanography 63, 159 – 181.
Burdige, D. J., 2005. Burial of terrestrial organic matter in marine sediments : A re-assessment. Global Biogeochemical Cycles 19, GB4011.
Burdige, D. J., 2001. Dissolved organic matter in Chesapeake Bay sediment pore waters. Organic Geochemistry 32, 487 – 505.
Burdige, D. J., Alperin, M. J., Homstead J. and Martens C. S., 1992. The role of benthic fluxes of dissolved organic carbon in oceanic and sedimentary carbon in oceanic and sedimentary carbon cycling. Journal of Geophsical Research 19, 1851 – 1854.
Burdige, D. J., Berelson, W. M., Coale, K. H., McManus, J. and Johnson, K. S., 1999. Fluxes of dissolved organic carbon from California continental margin sediments. Geochimica et Cosmochimica Acta 63, 1507 – 1515.
Burdige, D. J., Dennis, A. H. and Craig, A. C., 2002. Sediment Pore Waters. Biogeochemistry of Marine Dissolved Organic Matter. San Diego, Academic Press 611 – 663.
Burdige, D. J. and Gardner, K. G., 1998. Molecular weight distribution of dissolved organic carbon in marine sediment pore waters. Marine Chemistry 62, 45 – 64.
Burdige, D. J and Homstead, J., 1994. Fluxes of dissolved organic carbon from Chesapeake Bay sediments. Geochimica et Cosmochimica Acta 58, 3407 – 3424.
Burdige, D. J. and Zheng, S., 1998. The biogeochemical cycling of dissolved organic nitrogen in estuarine sediments. Limnology and Oceanography 43, 1796 – 1813.
Cowan, J. L. W. and Boynton, W. R., 1996. Sediment-water oxygen and nutrient exchanges across the longitudinal axis of Chesapeake Bay : seasonal patterns, controlling factors and ecological significance. Estuaries 19, 562 – 580.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. -L., Willett, S.D., Hu, J. -C., Horng, M. -J., Chen, M. -C., Stark, C. P., Lague, D. and Lin, J. -C., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426, 648 – 651.
Garrels, R. M., Mackenzie, F. T. and Hunt, C., 1975. Chemical cycle and the global environment. William Kaufman, NY, 260 p.
GESAMP, 1987. Land/sea boundary flux of contaminants. Contributions form rivers. Report and Studies No.32. UNESCO, Paries, pp 31 – 36.
Henrichs, S. M., 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis – a comment. Marine Chemistry 49, 127 – 136.
Holcombe, B. L., Keil, R., and Devol, A. H., 2001. Determination of pore-water dissolved organic carbon fluxes from Mexican margin sediments. Limnology and Oceanography 46,298 – 308.
Huh, C. A., Lin, H. L., Lin, S. and Huang, Y. W., 2009. Modern accumulation rates and a budget of sediment off the Gaoping ( Kaoping ) River, SW Taiwan : A tidal and flood dominated depositional environment around a submarine canyon. Journal of Marine Systems 76, 405 – 416.
Hung, J. J., Lin, C. S., Hung, K. W. and Chung, Y., 1999. Lateral transport of lithogenic particles from the continental margin of the southern East China Sea. Estuarine, Coastal and Shelf Science 49:483 – 499.
Hung, J. J., Lin, P. L. and Liu, K. K., 2000. Dissolved and particulate organic carbon in the southern East China Sea. Continental Shelf Research 20, 545 – 569.
Hung, J. J., Chen, C. H., Gong, G. C., Sheu, D. D. and Shiah, F. K., 2003. Distributions, stoichiometric patterns and cross-shelf exports of dissolved organic matter in the East China Sea. Deep-Sea Research II 50, 1127 – 1145.
Hung, J. J. and Hsu, C. L., 2004. Present state and historical changes of trace metal pollution in Kaoping coastal sediments, southwestern Taiwan. Marine Pollution Bulletin 49, 986 – 998.
Klump, J. V. and Martens, C. S., 1983. Benthic nitrogen regeneration. In : Carpenter, E. J. and Capone, D. G. (Eds.), Nitrogen in the Marine Environment. Academic Oress, NY, pp. 411 – 457.
Liu, J. T. and Lin, H. L., 2004. Sediment dynamics in a submarine canyon : a case of river interaction. Marine Geology 207, 55 – 81.
Liu, J. T., Parkinson, R. W., Venanzi, P. F. and Hou, L. H., 1994. The influence of a stable tidal inlet on the distributions of shoreface grain sizes under low wave energy conditions. 7th International Biennial Conference on Physics of Estuaries and Coastal Seas. Meeting Abstracts, Woods Hole Oceanographic Institution.
Ludwig, W. and Probst, J. L., 1998. River sediment discharge to the oceans; present-day controls and global budgets, American Journal of Science 298, 265 – 295.
Martens, C. S. and Klump, J. V., 1984. Biogeochemical cycling in an organic-rich marine basin – 4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis. Geochimica et Cosmochimica Acta 48, 1987 – 2004.
Milliman, J. D. and Kao, S. J., 2005. Hyperpycnal discharge of fluvial sediment to the ocean : impact of super-typhoon Herb ( 1996 ) on Taiwanese Rivers. The Journal of Geology 113, 503 – 516.
Milliman, J. D. and Meade, R. H., 1983. World wide delivery of river sediments to the oceans. The Journal of Geology 91, 1 – 21.
Pai, S. C., Tsau, Y. J. and Yang, T. I., 2001. pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method. Analytical Chimica Acta 434, 209 – 216.
Pai, S. C. and Yang, C. C., 1990. Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylbdenum blue complex. Analytical Chimica Acta 229, 115 – 120.
Sarmiento, J. L. and Gruber, N., 2006. Ocean biogeochemical dynamics. Princeton University Press. Princeton, NJ, 264 pp.
Schlesinger, W. H., 1991. Biogeochemistry : an analysis of global change. Academic Press, San Diego, 425 p.
Strickland, J. D. H. and Parson, T. R., 1972. A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, 2nd Edn. 167, 311 pp.
Wright, L. D. and Nittrouer, C. A., 1995. Dispersal of river sediments in coastal Seas : six contrasting cases. Estuaries 18, 494 – 508.
Yu, H. S., 1993. Contrasting tectonic style of a foredeep with a passive margin : southwest Taiwan and South China. Petroleum Geology of Taiwan 28, 97 – 118.
Yu, H. S. and Chiang, C. S., 1997. Kaoping shelf : morphology and tectonic siginificance. Journal of Asian Earth Sciences 15, 9 – 18.
Yu, H. S., Hung, C. S. and Ku, W. J., 1991. Morphology and possible origin of the Kaoping submarine canyon head off southwest Taiwan. Acta Oceanographica Taiwanica 28, 19 – 30.
Yu, H. S. and Lee, T. J., 1992. Echo character of the shelf-upper slope transition off southwestern Taiwan margin and its relationship to Quaternary sedimentation. Acta Oceanographica Taiwanica 29, 45 – 58.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code