Responsive image
博碩士論文 etd-0909109-185909 詳細資訊
Title page for etd-0909109-185909
論文名稱
Title
利用底切蝕刻方式製作矽光波導
Silicon-based Optical Waveguide Using Undercut Etching Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-24
繳交日期
Date of Submission
2009-09-09
關鍵字
Keywords
底切蝕刻、波導、矽基光電積體電路
undercut etching, waveguide, Si-based OEICs
統計
Statistics
本論文已被瀏覽 5692 次,被下載 0
The thesis/dissertation has been browsed 5692 times, has been downloaded 0 times.
中文摘要
本研究提出和證明以底切蝕刻方式於矽基板上製作矽光波導,此製作方式是以氣體SF6進行兩次乾蝕刻完成,首先藉由反應性離子蝕刻(Reactive Ion Etching,RIE)以非等向性方式,定義出此波導核心形狀;再藉由電子迴旋共振式(Electron Cyclotron Resonance,ECR)離子反應蝕刻以等向性方式完成底切內緣蝕刻,將光場分離於矽基板和波導,進而將光場侷限於矽光波導之中。
在量測部分,藉由Fabry-Perot共振腔方法量測波導損耗,其損耗完成至2.89dB/cm,由此可知此波導結構確實有侷限光場能力。為了減少波導對於單模光纖之間模態的差異,設計漸變式波導減少其耦合損耗,此波導結構其漸變寬度為20μm至6μm。其漸變式波導長700μm時波導損耗為4.13dB/cm,另外將此漸變式波導用於量測四波混合(Four-Wave Mixing,FWM)現象,證實了高能量的光場可侷限於此波導核心之中。由定量與定性分析方法得知此波導結構確實有絕佳的光場侷限能力,和於矽基板上製作光電積體電路之可能性,實現與CMOS製程技術結合,避免了昂貴的絕緣層上覆矽(Silicon-On-Insulator,SOI)技術。
Abstract
In this work, a novel type of optical waveguide, namely two-step undercut-etching Si waveguide (TSUESW), fabricated in Si-substrate is proposed and demonstrated. All this waveguide processing is based on two step of SF6-based dry etching method. In the first step, an anisotropic etching by Reactive Ion Etching (RIE) is used to define the waveguide core. After that, an undercut etching through an isotropic etching processing Electron Cyclotron Resonance (ECR) is then utilized to decouple the optical light of the waveguide core from Si substrate.
In the measurement setup, an optical propagation loss coefficient of 2.89dB/cm is obtained by extracting from Fabry-Perot oscillation, suggesting the confined optical mode in TSUESW can be realized. A tapered optical waveguide is also designed and fabricated, where the core of tapered structure is defined as widths of from 20μm to 6μm for optical fiber coupler. A 4.13dB/cm of loss from 700μm long waveguide is found in such tapered waveguide. Through the nonlinear properties of Si material, a Four-Wave Mixing (FWM) behavior is observed in tapered waveguide, further confirming the optical power can be highly confined in small core of TSUESW. It also should be noted that the waveguide technology template can be processed in a Si-substrate to realize CMOS-compatible processing, avoiding high-cost Silicon-On-Insulator (SOI) technology.
目次 Table of Contents
目錄……………………………………1
誌謝……………………………………3
中文摘要………………………………4
英文摘要………………………………5
第一章 緒論……………………………6
1.1前言…………………………………6
1.1.1光子整合電路……………………6
1.1.2 矽基光電積體電路………………7
1.1.3 絕緣層上覆矽……………………10
1.2研究動機……………………………11
1.3論文架構……………………………13
第二章 波導的原理與模擬……………14
2.1基本導波……………………………14
2.1.1平面波導…………………………14
2.1.2絕緣層上覆矽波導結構…………16
2.1.3底切蝕刻波導結構………………17
2.1.4結果討論 …………………………23
2.2漸變式波導…………………………24
2.2.1絕緣層上覆矽結構之漸變式波導 …25
2.2.2底切蝕刻結構之漸變式波導………29
2.2.3結果討論……………………………31
第三章 實驗………………………………34
3.1 樑脊蝕刻………………………………34
3.2底切蝕刻………………………………38
3.3高溫氧化………………………………41
第四章 量測結果…………………………47
4.1 Fabry-Perot 共振方法………………47
4.2直條波導傳輸損耗……………………50
4.3漸變式波導傳輸損耗…………………56
4.4結果討論………………………………58
4.5 四波混合 ……………………………61
第五章 結論………………………………69
參考文獻…………………………………70
參考文獻 References
[1]黃鼎偉 “Silicon Photonic 矽光子學 講義”
[2]Graham T. Reed, Andrew P. Knights “Silicon Photonics”
[3]R. G. Beausoleil “A Nanophotonic Interconnect for High-Performance Many-Core Computation” IEEE LEOS NEWSLETTER, June 2008
[4]Jonathan E. Roth “An Optical Interconnect Transceiver at 1550 nm Using Low-Voltage Electroabsorption Modulators Directly Integrated to CMOS” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 12, DECEMBER 2007
[5]Bahram Jalali “Silicon Photonics” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 12, DECEMBER 2006
[6]Richard Soref “The Past, Present, and Future of Silicon Photonics” IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2006
[7]Yurii Vlasov IBM Research Division “Silicon photonics for next generation computing system” European Conference on Optical Communications, September 22, 2008
[8]Graham T.Reed “SILICON PHOTONICS-THE STATE OF THE ART”
[9]Alexander W. Fang “ Hybrid silicon evanescent devices” Materialstoday JULY-AUGUST 2007, VOLUME 10, NUMBER 7-8
[10]G. Roelkens “III-V/Si photonics by die-to-wafer bonding” Materialstoday JULY-AUGUST 2007, VOLUME 10, NUMBER 7-8
[11]Michal Lipson “Compact Electro-Optic Modulators on a Silicon Chip” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2006
[12]Hirohito Yamada “Si Photonic Wire Waveguide Devices” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2006
[13]Pieter Dumon “Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 16, NO. 5, MAY 2004
[14]Michel Bruel “SmartCut: A New Silicon On Insulator Material Technology on Hydrogen Implantation and Wafer Bonding” Jpn. J. Appl. Phys. Vol. 36 (1997) pp. 1636-1641
[15]Katerina Raleva “Is SOD Technology the Solution to Heating Problems in SOI Devices?” IEEE ELECTRON DEVICE LETTERS, VOL. 29, NO. 6, JUNE 2008
[16]I.R. Johnston “Silicon-based fabrication process for production of optical waveguides” IEE Proc. - Optoelectron., Vol. 143, No. I , February 1996
[17]Jian-Ming Huang “A CMOS OPTO-ELECTRONIC SINGLE CHIP USING THE HYBRID SCHEME FOR OPTICAL RECEIVERS” MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Vol. 50, No. 9, September 2008
[18]李宗桂 “Radiation of Adiabatic Tapered Waveguides”
[19]Osamu Mitomi “Design of a Single-Mode Tapered Waveguide for Low-Loss Chip-to-Fiber Coupling” IEEE JOURNAL OF QUANTUM ELECTRONICS, Vol. 30, No. 8, AUGUST 1994
[20]PAUL G . SUCHOSKI “Design of Single-Mode Step-Tapered Waveguide Sections” IEEE JOURNAL OF QUANTUM ELECTRONICS, Vol. QE-23, No. 2, FEBRUARY 1987
[21]Janes D. Plummer “Silicon VLSI Technology-Fundamentals, Practice and Modeling”
[22]Siti Azlina Rosli “Characteristics of RIE SF6/02/Ar Plasmas on n-Silicon Etching” ICSE2006 Proc. 2006, Kuala Lumpur, Malaysia. IEEE
[23]Wim Bogaerts “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 23, No. 1, JANUARY 2005
[24]Thomas Feuchter “High Precision Planar Waveguide Propagation Loss Measurement Technique Using a Fabry-Perot Cavity” IEEE PHOTONICS TECHNOLOGY LETIERS. VOL. 6. NO. IO, OCTOBER 1994
[25]G Tittelbacht “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement” Pure Appl. Opt. 2 (1993) 683-706. Printed in the UK
[26]Hiroshi Fukuda “Four-wave mixing in silicon wire waveguides” 13 June 2005 / Vol. 13, No. 12 / OPTICS EXPRESS 4629
[27]C. W. Thiel “Four-Wave Mixing and its Application”
[28]GOVIND P. AGRAWAL “Fiber-Optic Communication System”
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.217.220.114
論文開放下載的時間是 校外不公開

Your IP address is 18.217.220.114
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code