Responsive image
博碩士論文 etd-0909110-111520 詳細資訊
Title page for etd-0909110-111520
論文名稱
Title
底切蝕刻技術製作微孔洞於超微液滴生成之研究及其製藥應用
Micropores Fabricated Using Undercut Etching Techniques for Ultra Small Droplets Formation and Its Pharmaceutical Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
66
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-30
繳交日期
Date of Submission
2010-09-09
關鍵字
Keywords
T型管道、底切技術、微孔洞、幾丁聚醣
T-junction, under-cut, orifice, chitosan
統計
Statistics
本論文已被瀏覽 5696 次,被下載 0
The thesis/dissertation has been browsed 5696 times, has been downloaded 0 times.
中文摘要
本研究藉由玻璃晶片製程中底切技術於T型管道的側管出口製作出一半弧形超微孔洞(水力直徑小於2 μm),用以生產直徑小於10 μm微液滴,並利用此管道設計於具有醫藥應用價值之幾丁聚醣(Chitosan)微液滴的生成。本實驗以底切製程技術製作出一新型微孔洞T型管道結構於玻璃基板上,利用簡單的製程技術製作微孔洞結構於管道匯流處即可大幅提高T型管道生成微液滴的尺寸極限,同時探討微孔洞的尺寸改變對於微液滴生成尺寸以及生成型態的改變與影響。本研究並利用表面改質技術,使玻璃管道內的親水特性改質成疏水性質而生成水相微液滴,並調查界面活性劑濃度於0.5%∼1.5%之間對於已改質晶片表面的接觸角及微液滴生成尺寸的影響。實驗結果顯示,本研究藉由操控連續相及分散相之流速比以及微孔洞水力直徑,可製作出最大直徑為70 μm至最小直徑為6.5 μm微液滴。所製作微液滴均勻性高,於直徑13.5 μm時其標準差為0.66,變異係數為3.13%;於直徑6.5 μm時其標準差為0.21,變異係數為5.7%。本晶片之設計可有效完成高均勻性之微奈米尺寸乳化晶片。
本研究亦成功製作出具有醫藥應用價值的幾丁聚醣乳化液滴,並藉由調控流速比(flow rate ratio)大小可生成59 μm 至27 μm 幾丁聚醣微液滴。本研究成功展示出利用底切技術製作出新式T型管道於乳化微流體晶片上,未來可在乳液製程、奈米生醫和微液滴上做極為廣泛的運用,使得此技術平台可拓展至生物技術和藥物傳輸的領域。
Abstract
This research successfully created an ultra-small orifice utilizing undercut fabrication process in a droplet-based microfluidics chip. The proposed novel T-junction structure with ultra-small orifice has a lot of advantages, including long-term stability for uniform droplets formation, reproducible ultra-small size droplet and tunable droplet size. The hydraulic diameter of the orifice is under 2 μm, and the size of micro droplet produced from the orifice can be tuned to less than 10 μm in diameter. Chitosan droplet can be produced by the proposed chip, which is usually adopted for medical applications. Surface modification technique was applied to modify the surface of microchannel to be hydrophobic for eaily producing hydro-droplets. Experimental results show that the ultra-small orifice microfluidics chip can steadily produce water-in-oil droplets only by controlling the flow ratio between dispersed phase and continuous phase flow rates. The size of the water-in-oil droplets can be tunable from 22 μm to 6.5 μm in diameter by adjusting the flow rate ratio of the continuous and disperse phase flows from 1 to 3.5 and the hydraulic diameter of the orifice is 1.1 μm. And the size of the chitosan-in-oil droplets also can be tunable from 59 μm to 27 μm by adjusting the flow rate ratio of the continuous and disperse phase flows from 4 to 8. The proposed microchip has advantages including ease of control, low cost, and high throughput. The proposed technique can be widely applied on emulsion and micro droplet generation.
目次 Table of Contents
目錄 I
圖目錄 IV
符號表 VII
簡寫表 VIII
摘要 IX
Abstract X
第一章 緒論 1
1.1 微機電系統 1
1.2 乳化 1
1.3 乳化晶片文獻回顧 3
1.3.1 主動液滴生成 3
1.3.2 被動液滴生成 6
1.3.3 微液滴生成應用 13
1.4 研究動機與目的 15
1.5 論文架構 16
第二章 理論分析與晶片設計 18
2.1 乳化 18
2.1.1定義與特性 18
2.1.2界面活性劑 20
2.2 幾丁聚醣 21
2.2.1 幾丁聚醣之特性與應用 21
2.3 表面張力 21
2.3.1 接觸角與親疏水性 22
2.3 T型管道內微液滴生成原理 22
2.4雷諾數 23
2.5標準差 24
2.5變異系數 24
2.6水力直徑 25
2.7微孔洞設計概念 25
第三章 材料與方法 28
3.1 材料選擇與光罩製作 28
3.2 晶片製作 29
3.3 微孔洞水力直徑計算 33
3.4 實驗系統架設 35
第四章 結果與討論 37
4.1微液滴生成 37
4.2 界面活性劑濃度與接觸角及微液滴尺寸關係 38
4.3 微孔洞水力直徑與微液滴生成尺寸關係 39
4.4 微孔洞水力直徑與微液滴生成接觸角 45
4.5 幾丁聚醣微液滴生成 47
第五章 結論與未來展望 48
5.1 結論 48
5.2 未來展望 49
參考文獻 51
自述 56
參考文獻 References
[1] T. McCreedy, "Fabrication techniques and materials commonly used for the production of microreactors and micro total analytical systems," Trac-Trends in Analytical Chemistry, vol. 19, pp. 396-401, 2000.
[2] D. J. Yoon, C. H. Han, E. Yoon, and C. K. Kim, "Monolithic Integration of 3-D Electroplated Microstructures with Unlimited Number of Levels Using Planarization with a Sacrificial Metallic Mold (PSMM)," in 12th IEEE Inter-national Conference on MEMS, pp. 624-629, 1999.
[3] D. J. Harrison, K. Fluri, K. Seiler, Z. H. Fan, C. S. Effenhauser, and A. Manz, "Micromachining a Miniaturized Capillary Electrophoresis-Based Chemi-cal-Analysis System on a Chip," Science, vol. 261, pp. 895-897, 1993.
[4] S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, "Droplet microfluidics," Lab on a Chip, vol. 8, pp. 198-220, 2008.
[5] S. M. Jafari, Y. H. He, and B. Bhandari, "Nano-emulsion production by soni-cation and microfluidization - A comparison," International Journal of Food Properties, vol. 9, pp. 475-485, 2006.
[6] A. Jahn, J. E. Reiner, W. N. Vreeland, D. L. DeVoe, L. E. Locascio, and M. Gaitan, "Preparation of nanoparticles by continuous-flow microfluidics," Journal of Nanoparticle Research, vol. 10, pp. 925-934, 2008.
[7] K. Ahn, J. Agresti, H. Chong, M. Marquez, and D. A. Weitz, "Electrocoales-cence of drops synchronized by size-dependent flow in microfluidic channels," Applied Physics Letters, vol. 88, 2006.
[8] C. Simonnet and A. Groisman, "Two-dimensional hydrodynamic focusing in a simple microfluidic device," Applied Physics Letters, vol. 87, 2005.
[9] Y. C. Tan, V. Cristini, and A. P. Lee, "Monodispersed microfluidic droplet generation by shear focusing microfluidic device," Sensors and Actuators B-Chemical, vol. 114, pp. 350-356, 2006.
[10] B. C. Lin and Y. C. Su, "On-demand liquid-in-liquid droplet metering and fu-sion utilizing pneumatically actuated membrane valves," Journal of Micro-mechanics and Microengineering, vol. 18, 2008.
[11] T. K. a. S. Konishi, "NANOLITER SCALE DROPLET EXTRACTION IN COMBINATION OF DEFORMABLE WALL AND SUPER HYDRO-PHOBIC PATTERN IN CHANNEL," in IEEE International Conference on Micro-Electro-Mechanical Systems Hong Kong, pp. 1099-1102, 2010.
[12] S. K. Hsiung, C. T. Chen, and G. B. Lee, "Micro-droplet formation utilizing microfluidic flow focusing and controllable moving-wall chopping tech-niques," Journal of Micromechanics and Microengineering, vol. 16, pp. 2403-2410, 2006.
[13] H. W. Wu, Y. C. Huang, C. L. Wu, and G. B. Lee, "Exploitation of a micro-fluidic device capable of generating size-tunable droplets for gene delivery," Microfluidics and Nanofluidics, vol. 7, pp. 45-56, 2009.
[14] S. C. Lai, C. H. Yeh, Q. L. Zhao, and Y. C. Lin, "USING AN ULTRASONIC VIBRATION MICROFLUIDIC CHIP TO GENERATE UV-CROSSLINKING MICROPARTICLES," in The 15th International Con-ference on Solid-State Sensors, Actuators and Microsystems Denver, USA, pp. 445-448, 2009.
[15] T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, "Dynamic pattern formation in a vesicle-generating microfluidic device," Physical Review Letters, vol. 86, pp. 4163-4166, 2001.
[16] B. Zheng and R. F. Ismagilov, "A microfluidic approach for screening submi-croliter volumes against multiple reagents by using preformed arrays of nano-liter plugs in a three-phase liquid/liquid/gas flow," Angewandte Che-mie-International Edition, vol. 44, pp. 2520-2523, 2005.
[17] D. Dendukuri, K. Tsoi, T. A. Hatton, and P. S. Doyle, "Controlled synthesis of nonspherical microparticles using microfluidics," Langmuir, vol. 21, pp. 2113-2116, 2005.
[18] P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, "Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up," Lab on a Chip, vol. 6, pp. 437-446, 2006.
[19] J. H. Xu, S. Li, G. G. Chen, and G. S. Luo, "Formation of monodisperse mi-crobubbles in a microfluidic device," Aiche Journal, vol. 52, pp. 2254-2259, 2006.
[20] R. Dreyfus, P. Tabeling, and H. Willaime, "Ordered and disordered patterns in two-phase flows in microchannels," Physical Review Letters, vol. 90, 2003.
[21] Y. Liu, S. Y. Jung, and C. P. Collier, "Shear-Driven Redistribution of Surfac-tant Affects Enzyme Activity in Well-Mixed Femtoliter Droplets," Analytical Chemistry, vol. 81, pp. 4922-4928, 2009.
[22] S. M. S. Murshed, S. H. Tan, and N. T. Nguyen, "Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microflui-dics," Journal of Physics D-Applied Physics, vol. 41, 2008.
[23] T. Nisisako, T. Torii, and T. Higuchi, "Droplet formation in a microchannel network," Lab on a Chip, vol. 2, pp. 24-26, 2002.
[24] H. Sato, H. Matsumura, S. Keino, and S. Shoji, "An all SU-8 microfluidic chip with built-in 3D fine microstructures," Journal of Micromechanics and Mi-croengineering, vol. 16, pp. 2318-2322, 2006.
[25] F.-L. L. Jr-Ming Miao, "匯流處構型對T型微流道中液滴流生成機制之影響 " 中正嶺學報 vol. 35, 2007.
[26] A. J. Abrahamse, R. van Lierop, R. G. M. van der Sman, A. van der Padt, and R. M. Boom, "Analysis of droplet formation and interactions during cross-flow membrane emulsification," Journal of Membrane Science, vol. 204, pp. 125-137, 2002.
[27] S. L. Anna, N. Bontoux, and H. A. Stone, "Formation of dispersions using "flow focusing" in microchannels," Applied Physics Letters, vol. 82, pp. 364-366, 2003.
[28] P. Garstecki, I. Gitlin, W. DiLuzio, G. M. Whitesides, E. Kumacheva, and H. A. Stone, "Formation of monodisperse bubbles in a microfluidic flow-focusing device," Applied Physics Letters, vol. 85, pp. 2649-2651, 2004.
[29] D. Saeki, S. Sugiura, T. Kanamori, S. Sato, S. Mukataka, and S. Ichikawa, "Highly Productive Droplet Formation by Anisotropic Elongation of a Thread Flow in a Microchannel," Langmuir, vol. 24, pp. 13809-13813, 2008.
[30] T. Ward, M. Faivre, M. Abkarian, and H. A. Stone, "Microfluidic flow focus-ing: Drop size and scaling in pressure versus flow-rate-driven pumping," Electrophoresis, vol. 26, pp. 3716-3724, 2005.
[31] F. J. Zendejas, U. Srinivasan, W. J. Holtz, J. D. Keasling, and R. T. Howe, "Microfluidic generation of tunable emulsions for templated monodisperse si-lica," in Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05. The 13th International Conference on, pp. 1473-1476 Vol. 2, 2005.
[32] A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, "Monodisperse double emulsions generated from a microcapillary de-vice," Science, vol. 308, pp. 537-541, 2005.
[33] M. Seo, C. Paquet, Z. H. Nie, S. Q. Xu, and E. Kumacheva, "Microfluidic consecutive flow-focusing droplet generators," Soft Matter, vol. 3, pp. 986-992, 2007.
[34] W. L. Ong, J. S. Hua, B. L. Zhang, T. Y. Teo, J. L. Zhuo, N. T. Nguyen, N. Ranganathan, and L. Yobas, "Experimental and computational analysis of droplet formation in a high-performance flow-focusing geometry," Sensors and Actuators a-Physical, vol. 138, pp. 203-212, 2007.
[35] L. Martin-Banderas, M. Flores-Mosquera, P. Riesco-Chueca, A. Rodriguez-Gil, A. Cebolla, S. Chavez, and A. M. Ganan-Calvo, "Flow focusing: A versatile technology to produce size-controlled and specific-morphology mi-croparticles," Small, vol. 1, pp. 688-692, 2005.
[36] F. C. Chang and Y. C. Su, "Controlled double emulsification utilizing 3D PDMS microchannels," Journal of Micromechanics and Microengineering, vol. 18, 2008.
[37] V. Schroder and H. Schubert, "Production of emulsions using microporous, ceramic membranes," Colloids and Surfaces a-Physicochemical and Engi-neering Aspects, vol. 152, pp. 103-109, 1999.
[38] A. M. Chuah, T. Kuroiwa, I. Kobayashi, and M. Nakajima, "Effect of chitosan on the stability and properties of modified lecithin stabilized oil-in-water mo-nodisperse emulsion prepared by microchannel emulsification," Food Hydro-colloids, vol. 23, pp. 600-610, 2009.
[39] I. Kobayashi, S. Mukataka, and M. Nakajima, "Effect of slot aspect ratio on droplet formation from silicon straight-through microchannels," Journal of Colloid and Interface Science, vol. 279, pp. 277-280, 2004.
[40] I. Kobayashi, S. Hirose, T. Katoh, Y. P. Zhang, K. Uemura, and M. Nakajima, "High-aspect-ratio through-hole array microfabricated in a PMMA plate for monodisperse emulsion production," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 14, pp. 1349-1357, 2008.
[41] G. T. Vladisavljevic and H. Schubert, "Influence of process parameters on droplet size distribution in SPG membrane emulsification and stability of pre-pared emulsion droplets," Journal of Membrane Science, vol. 225, pp. 15-23, 2003.
[42] F. Ikkai, S. Iwamoto, E. Adachi, and M. Nakajima, "New method of produc-ing mono-sized polymer gel particles using microchannel emulsification and UV irradiation," Colloid and Polymer Science, vol. 283, pp. 1149-1153, 2005.
[43] S. Sugiura, M. Nakajima, K. Yamamoto, S. Iwamoto, T. Oda, M. Satake, and M. Seki, "Preparation characteristics of water-in-oil-in-water multiple emul-sions using microchannel emulsification," Journal of Colloid and Interface Science, vol. 270, pp. 221-228, 2004.
[44] S. Sugiura, M. Nakajima, and M. Seki, "Preparation of monodispersed poly-meric microspheres over 50 mu m employing microchannel emulsification," Industrial & Engineering Chemistry Research, vol. 41, pp. 4043-4047, 2002.
[45] T. Kawakatsu, G. Tragardh, Y. Kikuchi, M. Nakajima, H. Komori, and T. Yonemoto, "Effect of microchannel structure on droplet size during crossflow microchannel emulsification," Journal of Surfactants and Detergents, vol. 3, pp. 295-302, 2000.
[46] I. Kobayashi, M. Yasuno, S. Iwamoto, A. Shono, K. Satoh, and M. Nakajima, "Microscopic observation of emulsion droplet formation from a polycarbonate membrane," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 207, pp. 185-196, 2002.
[47] A. M. Chuah, T. Kuroiwa, I. Kobayashi, X. Zhang, and M. Nakajima, "Prepa-ration of uniformly sized alginate microspheres using the novel combined methods of microchannel emulsification and external gelation," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 351, pp.9-17, 2009.
[48] J. Y. Chang, C. H. Yang, and K. S. Huang, "Microfluidic assisted preparation of CdSe/ZnS nanocrystals encapsulated into poly(DL-lactide-co-glycolide) microcapsules," Nanotechnology, vol. 18, 2007.
[49] C. H. Yang, K. S. Huang, and J. Y. Chang, "Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip," Biomedical Microdevices, vol. 9, pp. 253-259, 2007.
[50] H. J. Oh, S. H. Kim, J. Y. Baek, G. H. Seong, and S. H. Lee, "Hydrodynamic micro-encapsulation of aqueous fluids and cells via 'on the fly' photopolyme-rization," Journal of Micromechanics and Microengineering, vol. 16, pp. 285-291, 2006.
[51] P. Kumaresan, C. J. Yang, S. A. Cronier, R. G. Blazei, and R. A. Mathies, "High-throughput single copy DNA amplification and cell analysis in engi-neered nanoliter droplets," Analytical Chemistry, vol. 80, pp. 3522-3529, 2008.
[52] C. H. Yang, K. S. Huang, P. W. Lin, and Y. C. Lin, "Using a cross-flow mi-crofluidic chip and external crosslinking reaction for monodisperse TPP-chitosan microparticles," Sensors and Actuators B-Chemical, vol. 124, pp. 510-516, 2007.
[53] L. M. Fu, C. H. Tsai, and C. H. Lin, "A high-discernment microflow cytometer with microweir structure," Electrophoresis, vol. 29, pp. 1874-1880, 2008.
[54] J. H. Xu, G. S. Luo, S. W. Li, and G. G. Chen, "Shear force induced mono-disperse droplet formation in a microfluidic device by controlling wetting properties," Lab on a Chip, vol. 6, pp. 131-136, 2006.
[55] J.-Y. C. Jr-Ming Miao, Fuh-Lin Lih, Tsung-Sheng Sheu, "Flow Visualization on the Squeezing type Micro-droplet Formation," 八十三週年校慶基礎學術研討會, pp. 159-166, 2007.
[56] D. M. Qiu, L. Silva, A. L. Tonkovich, and R. Arora, "Micro-droplet formation in non-Newtonian fluid in a microchannel," Microfluidics and Nanofluidics, vol. 8, pp. 531-548, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.143.218.146
論文開放下載的時間是 校外不公開

Your IP address is 3.143.218.146
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code