Responsive image
博碩士論文 etd-0910102-120150 詳細資訊
Title page for etd-0910102-120150
論文名稱
Title
共聚酯之熔融行為、紅外線光譜研究與阻燃層之開發
Melting Behavior, Infrared Spectra of Copolyesters and Development of Insulators
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-07-30
繳交日期
Date of Submission
2002-09-10
關鍵字
Keywords
結晶、阻燃層、熔融行為、紅外線光譜、共聚酯
PTT, MDSC, PET
統計
Statistics
本論文已被瀏覽 5663 次,被下載 10015
The thesis/dissertation has been browsed 5663 times, has been downloaded 10015 times.
中文摘要
第一部份是共聚酯的熔融行為與紅外線吸收光譜的研究,以調幅式微差掃瞄卡儀(modulated differential scanning calorimeter, MDSC)研究一系列對苯二甲酸乙酯與對苯二甲酸丙酯共聚酯(PET/PTT)結晶後的熔融行為。樣品代號分別為C2,C3,C4,C6,C7和C8,代表其在共聚酯內ET單體(ethylene glycol)的組成為8.9,33.7,37.9,72.5,77.8,和90.8 mol-%。
由MDSC觀察共聚酯之熔融行為,有多熔融峰的現象。不同ET單體的組成,熔融行為有所差異。當ET單體含量越少,熔融再結晶在總熱流上所觀察到的現象越明顯。同時,由不可逆熱流所計算出的結晶放熱峰之焓也越大。當ET單體的組成為8.9,33.7,37.9 mol-%,多熔融峰主要是由熔融再結晶所造成,同時可逆熱流在高溫部分會出現第四根熔融峰,可能是共聚酯在加熱掃瞄過程中,經過regime II
Abstract
none
目次 Table of Contents
目錄
摘要 i
目錄 iii
表目錄 vi
圖目錄 viii
Part I. 共聚酯之熔融行為與紅外線光譜研究 1
第一章 緒論 1
研究動機 2
第二章 文練回顧與理論 3
2-1 多峰熔融行為 3
(1)熔融再結晶說 3
(2)雙形態說 4
(3)混合說 4
2-1-1 共聚酯之熔融行為 4
2-1-2 平衡熔點和玻璃轉化溫度 5
2-1-2-1 Hoffman-Weeks線性外插法 5
2-1-2-2 文獻的平衡熔點 6
2-2 共聚物玻璃轉化溫度 6
2-2-1 共聚酯的玻璃轉化溫度
2-3 調幅式微差掃瞄卡儀 7
2-3-1 以調幅式微差掃瞄卡儀研究熔融行為 8
2-4 聚酯的結晶結構 8
2-5 紅外線光譜與構形 9
2-5-1 紅外線光譜基本原理 9
2-5-2 聚酯的構形與紅外線吸收光譜 9
第三章 實驗 14
3-1 樣品 14
3-2 儀器設備 14
3-3 實驗流程圖 15
3-4 樣品製備 16
3-5 微差掃瞄卡儀實驗 16
3-6 紅外線吸收光譜 16
第四章 結果與討論 20
4-1 共聚酯的熔融行為 20
4-1-1 共聚酯C2的熔融行為 20
4-1-2 共聚酯C3的熔融行為 22
4-1-3 共聚酯C4的熔融行為 22
4-1-4 共聚酯C6的熔融行為 23
4-1-5 共聚酯C7的熔融行為 24
4-1-6 共聚酯C8的熔融行為 25
4-2 共聚酯的平衡熔點 26
4-3 共聚酯的紅外線吸收光譜 26
4-4 共聚酯的玻璃轉化溫度 28
第五章 結論 30
參考文獻 76
Part II. 聚酯阻燃層之開發 .81
第六章 簡介 81
6-1 不飽和聚酯 81
6-2 阻燃層 81
6-3 研究動機 82
第七章 文獻回顧 83
7-1 不飽和聚酯的合成 83
7-2 酯化過程中順式雙鍵的異構化 83
7-3 不飽和聚酯之NMR、FTIR研究 84
7-4 交聯反應機構 84
7-5 凝膠時間與放熱峰溫度 86
7-6 阻燃層之性質與熱特性 86
第八章 實驗
8-1 原料 87
8-2 實驗儀器 88
8-3 實驗步驟 89
8-3-1 不飽和聚酯合成 90
8-3-1-1 UP-1的合成 90
8-3-1-2 UP-2的合成 91
8-3-2 酸價的測定 92
8-3-3 氫氧價的測定 92
8-3-4 數目平均分子量 93
第九章 結果與討論 94
9-1 不飽和聚酯之基本性質 94
9-2 不飽和聚酯之鑑定 94
9-2-1 磁核共振光譜之鑑定 95
9-2-2 紅外光吸收光譜之測定 95
9-3 釜壽期與放熱峰溫度 96
9-4 熱特性之比較 96
第十章 結論 97
參考文獻 103
附錄一 105
附錄二 106

表目錄


Table 3-1 Copplyester compositions 17
Table 3-2 The hot press conditions of the copolyesters 17
Table 3-3 Onset temperature (℃) measured by TGA 17
Table 3-4 Melting conditions for isothermal crystallization amorphous samples ..................................................................17
Table 3-5 Crystallization temperature and isothermally at the indicated time
for different copolyesters ......................................18
Table 4-1 MDSC data of isothermally melt crystallized C2 samples at a heating
rate of 2℃/min, and a period of 40 sec. All temperatures are in ℃
.................................................................31
Table 4-2 Isothermally melt crystallized C2 samples at a heating rate of
2℃/min, and a period of 40 sec. All temperatures are in ℃ and ΔH
in Jg-1 .........................................................32
Table 4-3 MDSC data of isothermally melt crystallized C3 samples at a heating
rate of 3℃/min, and a period of 40 sec. All temperatures are in ℃ ..................................................................33
Table 4-4 Isothermally melt-crystallized C3 samples at a heating rate of
3℃/min, and a period of 40 sec. All temperatures are in ℃ and ΔH
in Jg-1 .........................................................34
Table 4-5 MDSC data of isothermally melt crystallized C4 samples at a heating
rate of 3℃/min, and a period of 40 sec. All temperatures are in ℃ .................................................................35
Table 4-6 Isothermally melt-crystallized C4 samples at a heating rate of
3℃/min, and a period of 40 sec. All temperatures are in ℃ and ΔH
in Jg-1 .........................................................36
Table 4-7 MDSC data of isothermally melt crystallized C6 samples at a heating
rate of 3℃/min, and a period of 40 sec. All temperatures are in ℃. .................................................................37
Table 4-8 Isothermally melt-crystallized C6 samples at a heating rate of
3℃/min, and a period of 40 sec. All temperatures are in ℃ and ΔH
in Jg-1 .........................................................38
Table 4-9 MDSC data of isothermally melt crystallized C7 samples at a heating
rate of 3℃/min, and a period of 40 sec. All temperatures are in ℃. .................................................................39
Table 4-10 Isothermally melt-crystallized C7 samples at a heating rate of
3℃/min, and a period of 40 sec. All temperatures are in ℃ and ΔH
in Jg-1 .........................................................40
Table 4-11 MDSC data of isothermally melt crystallized C8 samples at a heating
rate of 3℃/min, and a period of 40 sec. All temperatures are in ℃. .................................................................41
Table 4-12 Isothermally melt-crystallized C7 samples at a heating rate of
3℃/min, and a period of 40 sec. All temperatures are in ℃ and ΔH
in Jg-1..........................................................42
Table 4-13 Equilibrium melting temperature of copolyesters 43
Table 4-14 Glass transition temperatures for copolyesters with different
contents.........................................................43
Table 8-1 Properties of chemical reactants 87
Table 8-2 Compositions of unsaturated polyesters 89
Table 8-3 Weights of the monomers in the polymerization 89
Table 9-1 Properties of unsaturated polyesters 98
Table 9-2 Characteristics of unsaturated polyesters determined by 1H-NMR and
chemical titration.............................................98
Table.9-3 Thermal characterization of cured unsaturated polyester blends. 98


圖目錄
Fig. 2-1 Schematic representation of the macroconformations of polymer chains in
crystals. 11
Fig. 2-2 The contributions of the melt-recrystallization from the heating rates to the
final DSC traces (a)0% (b)25% (c)50% (d)75% (e)95% (f)100% 12
Fig. 2-3 The Hoffman-Weeks plot 13
Fig. 2-4 Heat flux DSC cell 13
Fig. 2-5 Typical MDSC heat rating profile 13
Fig. 3-1 The scheme of the hot press 19
Fig. 3-2 The profile of the temperature calibration function 19
Fig. 4-1 MDSC thermograms at a heating rate of 2ºC/min and a period of 40 sec for
C2 after melting at 245ºC for 5 min and crystallizing isothermally for various
time at the indicated temperature ranging from 180~207ºC. (a) 180~207ºC;
(b) 183~207ºC 42
Fig. 4-2 MDSC thermograms at a heating rate of 2ºC/min and a period of 40 sec for
C2 after melting at 245ºC for 5 min and crystallizing isothermally for various
time at the indicated temperature ranging from 180~207ºC. (a) 180~207ºC;
(b) 183~207ºC 43
Fig. 4-3 MDSC thermograms at a heating rate of 2ºC/min and a period of 40 sec for
C2 after melting at 245ºC for 5 min and crystallizing isothermally for various
time at the indicated temperature ranging from 180~207ºC. (a) 180~207ºC;
(b) 183~207ºC 44
Fig. 4-4 DSC and MDSC thermograms at a heating rate of 10ºC/min for DSC and 2ºC/min a period of 40 sec for MDSC. (a) non-reversing heat flow (b) DSC trace (c) reversing heat flow 46
Fig. 4-5 MDSC thermograms at a heartng rate of 3ºC/min and a period of 40 sec for
C3 after melting at 200ºC for 5 min and crystallizing isothermally for various
time at the indicated temperature ranging from 122~170ºC. (a) 122~170ºC;
(b) 126~170ºC 47
Fig. 4-6 MDSC thermograms at a heating rate of 3ºC/min and a period of 40 sec for
C3 after melting at 200ºC for 5 min and crystallizing isothermally for various
time at the indicated temperature ranging from 122~170ºC. (a) 122~170ºC;
(b) 126~170ºC 48
Fig. 4-7 MDSC thermograms at a heating rate of 3ºC/min and a period of 40 sec for
C3 after melting at 200ºC for 5 min and crystallizing isothermally for various
time at the indicated temperature ranging from 122~170ºC. (a) 122~170ºC;
(b) 126~170ºC 49
Fig. 4-8 MDSC thermograms at a heating rate of 3ºC/min and a period of 40 sec for
C4 after melting at 184ºC for 5 min and crystallizing isothermally for various
time at the indicated temperature ranging from 120~156ºC.(a) 120~156ºC;
(b) 124~156ºC 50
Fig. 4-9 MDSC thermograms at a heating rate of 3ºC/min and a period of 40 sec for
C4 after melting at 184ºC for 5 min and crystallizing isothermally for various
time at the indicated temperature ranging from 120~156ºC.(a) 120~156ºC;
(b) 124~156ºC 51
Fig. 4-10 MDSC thermograms at a heating rate of 3ºC/min and a period of 40 sec for
C4 after melting at 184ºC for 5 min and crystallizing isothermally for various
time at the indicated temperature ranging from 120~156ºC.(a) 120~156ºC;
(b) 124~156ºC 52
Fig. 4-11 MDSC thermograms at a heating rate of 3ºC/min and a period of 40 sec for
C6 after melting at 217ºC for 5 min and crystallizing isothermally for
various time at the indicated temperature ranging from 136~188ºC.
(a) 136~188ºC; (b) 140~188ºC 53
Fig. 4-12 MDSC thermograms at a heating rate of 3ºC/min and a period of 40 sec for
C6 after melting at 217ºC for 5 min and crystallizing isothermally for
various time at the indicated temperature ranging from 136~188ºC.
(a) 136~188ºC; (b) 140~188ºC 54
Fig. 4-13 MDSC thermograms at a heating rate of 3ºC/min and a period of 40 sec for
C6 after melting at 217ºC for 5 min and crystallizing isothermally for
various time at the indicated temperature ranging from 136~188ºC.
(a) 136~188ºC; (b) 140~188ºC 55
Fig. 4-14 MDSC thermograms at a heating rate of 3ºC/min and a period of 40 sec for
C7 after melting at 226ºC for 5 min and crystallizing isothermally for
various time at the indicated temperature ranging from 144~192ºC.
(a) 144~192ºC; (b) 148~192ºC 56
Fig. 4-15 MDSC thermograms at a heating rate of 3ºC/min and a period of 40 sec for
C7 after melting at 226ºC for 5 min and crystallizing isothermally for
various time at the indicated temperature ranging from 144~192ºC.
(a) 144~192ºC; (b) 148~192ºC 57
Fig. 4-16 MDSC thermograms at a heating rate of 3ºC/min and a period of 40 sec for
C7 after melting at 226ºC for 5 min and crystallizing isothermally for
various time at the indicated temperature ranging from 144~192ºC.
(a) 144~192ºC; (b) 148~192ºC 58
Fig. 4-17 MDSC thermograms at a heating rate of 3ºC/min and a period of 40 sec for
C8 after melting at 270ºC for 5 min and crystallizing isothermally for
various time at the indicated temperature ranging from 176~220ºC.
(a) 176~220ºC; (b) 180~220ºC 59
Fig. 4-18 MDSC thermograms at a heating rate of 3ºC/min and a period of 40 sec for
C8 after melting at 270ºC for 5 min and crystallizing isothermally for
various time at the indicated temperature ranging from 176~220ºC.
(a) 176~220ºC; (b) 180~220ºC 60
Fig. 4-19 MDSC thermograms at a heating rate of 3ºC/min and a period of 40 sec for
C8 after melting at 270ºC for 5 min and crystallizing isothermally for
various time at the indicated temperature ranging from 176~220ºC.
(a) 176~220ºC; (b) 180~220ºC 61
Fig. 4-20 Hoffman-Weeks plots and equilibrium temperarure for different
copolyesters. (a) calculated from peak II for C2 (b) calculated from peak IIR
for C2 (c) calculated from peak II for C3 (d) calculated from peak IIR for C3
(e) C4 (f) C6 (g) C7 (h) C8 62
Fig. 4-21 IR spectra of quenched samples C1~C9 68
Fig. 4-22 IR spectra of copolyester C2 after melting at 245ºC for 5 min and crystallizing isothermally for various time at the indicated temperature
ranging from 180~207ºC. (a) 180~207ºC; (b) 183~207ºC 69
Fig. 4-23 IR spectra of copolyester C3 after melting at 200ºC for 5 min and
crystallizing isothermally for various time at the indicated temperature
ranging from 122~170ºC. (a) 122~170ºC; (b) 126~170ºC 70
Fig. 4-24 IR spectra of copolyester C4 after melting at 184ºC for 5 min and
crystallizing isothermally for various time at the indicated temperature
ranging from 120~156ºC. (a) 120~156ºC; (b) 124~156ºC 71
Fig. 4-25 IR spectra of copolyester C6 after melting at 217ºC for 5 min and
crystallizing isothermally for various time at the indicated temperature
ranging from 136~188ºC. (a) 136~188ºC; (b) 140~188ºC 72
Fig. 4-26 IR spectra of copolyester C7 after melting at 226ºC for 5 min and
crystallizing isothermally for various time at the indicated temperature
ranging from 144~192ºC. (a) 144~192ºC; (b) 148~192ºC 73
Fig. 4-27 IR spectra of copolyester C8 after melting at 270ºC for 5 min and
crystallizing isothermally for various time at the indicated temperature
ranging from 176~220ºC. (a) 176~220ºC; (b) 180~220ºC 74
Fig. 4-28 Tg vs. ET.(ethylene glycol content ) and perditions by Fox and Johnston
equqtions(a) the copolyester composition determined and calculated by
13C-NMR and (b) by 1H-NMR 75
Fig. 9-1 1H-NMR 400 MHz spectra for (a) UP-1 and 200 MHz for (b) UP-2 99
Fig. 9-2 FTIR spectra (a) UP-1 (b) UP-2 100
Fig.9-3 Pot-life and exothermal temperature for unsaturated polyester blends with
different weight ratio. 101
Fig.9-4 TGA trace for unsaturated polyesters (a)free styrene (b)blend with different
weight ratio. 102
參考文獻 References
參考文獻(第一部份)
1.Whinfield, J. R.,Dickson, J. T., ”Polymeric Linear Terephthalic Esters”, 1949, US. Patent 2465319
2.馬振基, ”高分子復合材料(上)”, 國立編譯館, 台灣, 1995
3.陳宏謨, “PET工程塑膠的特性與應用”, 石化工業, 1993, 15, 6-12
4.Shell Enters the Carpet Industry: New Polymer Has Characteristics of Nylon, Polyester,” Floor Covering News, 1995, 10(5), May 22/29
5.Chisholm, B. J., Zimmer, J. G., “Isothermal crystallization kinetics of commercially important polyalkylene terephthalate,” J. Appl. Polym. Sci., 2000, 76, 1296-1307
6.Dangayach, K., Chuah, H., Gergen, W., Dalton, P., Smith, F., Plastics-Saving Planet Earth Proceedings of the SPE 55th Annual Technical Conference & Exhibits, 972/ANTECH’97, 1997, 2097-2101
7.Chuah, H., “Corterra Poly(trimethylene terephthalate)-New Polymeric Fiber for Carpets”, Chem. Fibers Int., 1996, 46, 424-428
8.Sarge, S.M., Hemminger, W., Gmelin, E., Hohne, G.W., Cammenga, H.K., Eysel, W., “Metrologically Based Procedures for the Temperature, Heat and Heat Flow Rate Calibration of DSC”, J. Therm. Anal., 1997, 49, 1125-1134
9.Wunderlich, B., Macromolecular Physics, Vol.1, Academic Press, New York, 1973, p.184
10.Rim, P. B., Runt, J. P., “Melting Point Depression in Crystalline/Compatible Polymer Blends”, Macromolecules, 1984, 17, 1520-1526
11.Lee, Y., Porter, R. S., “Double-Melting Behavior of Poly(ether ether ketone)”, Macromolecules, 1987, 20, 1336-1341
12.Holdworth, P.J., Turner-Jones, A., “The Melting Behaviour of Heat Crystallized Poly(ethylene terephthalate)”, Polymer, 1971, 12, 195-208
13.Zhou, C., Clough, S. B., “Multiple Melting Endotherms of Poly(ethylene terephthalate)”, Polym. Eng. Sci., 1988, 28, 65-68
14.Lee, J. W., Lee, S. W., Ree, M., “Synthesis and Non-Isothermal Crystallization Characteristics of Poly[(ethylene)-co-(trimethylene terephthalate)]s”, Macromol. Chem. Phys., 2001, 202, 3072-3080
15.Qudah, A. M. A., Al-Raheil, I. A., “Morphology and Melting Behaviour of Poly(ethylene terephthalate) Crystallized from the Glassy State”, Polym. Int., 1995, 38, 367-373
16.Kim, H.-G. and Robertson, R. E., “Multiple melting endotherm in isothermally melt-crystallized Poly(butylenes terephthalate),” J. Polym. Sci. Polym. Phys. Ed., 1998, 36, 1757-1767
17.Stein, R. S., Misra, A., “Morphological Studies on Polybutylene Terephthalate”, J. Polym. Sci . Polym. Phys. Ed., 1980, 18, 327-342
18.Groeninckx, G., Reynaers, H., Berghmans, H., Smets, G., “Morphology and Melting Behavior of Semicrystalline Poly(ethylene terephthalate)”, J. Polym. Sci. Polym. Phys. Ed., 1980, 18, 1311-1324
19.Roberts, R. C.,” Poly(ethylene terephthalate) Ⅱ-Morphological Changes on Annealing”, Polymer,1969, 10, 117-125
20.Bassett, D. C., Olley, R. H., Al Raheil, I. A. M., “On Crystallization Phenomena in PEEK”, Polymer,1988, 29, 1745-1754
21.Marand, H., Prasad, A., “On the Observation of a New Morphology in Poly(arylene ether ether ketone). A Further Examination of the Double Endothermic Behavior of Poly(arylene ether ether ketone)”, Macromolecules, 1992, 25, 1731-1736
22.鄭添來, “順式1,4聚丁二烯結晶與熔融行為之研究”, 博士論文, 1993, 國立中山材料科學所
23.Janimak, J. J., Cheng, S. Z. D., Zhang, A., “Isotacticity Effect on Crystallization and Melting in Polypropylene Fraction: 3. Overall Crystallization and Melting Behaviour”, Polymer,1992, 33, 728-735
24.Chung, J. S., Cebe, P., “Melting Behavior of Poly(Phenylene Sulfide) .1. Single-Stage Melt Crystallization”, Polymer,1992, 33, 2312-2324
25.Chung, J. S., Cebe, P., “Melting Behavior of Poly(Phenylene Sulfide) .2. Multiple Stage Melt Crystallization”, Polymer,1992, 33, 2325-2333
26.韋志龍, “聚二醚酮結晶動力學與熔融行為以及穿晶對碳纖/聚二醚酮複材在長項張力-張力性質之影響”, 碩士論文, 2000,國立中山大學材料學所
27.Finelli, L., Lotti, N., Munari, A., “Crystallization Kinetics and Melting Behavior of Poly(buthylene isophthalate/terephthalate) Random Copolyester,” Eur. Polym. J., 2001, 37, 2039-2046
28.Chou, R.-M., Chang, C.-C., Yu, T.-L., Tseng, Y.-H., Wu, M.-J., “Crystallization Kinetics of Poly(1,4-butylene-co-ethylene terephthalate),” Polym. Int., 2001, 50, 213-221
29.Zhang, R., Luo, X., Ma, D., “Multiple Melting endotherms from Ethylene Terephthalate-Caprolactone Copolyesters”, Polymer,1995, 36, 4361-4364
30.Hoffman. J. D., Weeks, J. J., “Melting Process and the Equilibrium Melting Temperature of Polychlorotrifluoroethylene”, J. Res Nat. Bur. St., 1962, 66A, 13-28
31.Lauritzen, J. I., Hoffman, J. D., “Theory of Formation of Polymer Crystals with Folded Chains in Dilute Solution”, J. Res Nat. Bur. St., 1960, 64A, 73
32.Barrett, L. W., Sperling, L. H., Gilmer, J., Mylonakis, S. G.,” Crystallization Kinetics of Poly(ethylene-terephthalate) in Compositions Containing Naturally Functionalized Triglyceride Oil”, J. Appl. Polym. Sci., 1993, 48, 1035-1050
33.Reinsch, V. E., Rebenfeld, L., ” Crystallization Processes in Poly(ethylene-terephthalate) as Modified by Polymer Additives and Fiber Reinforcement”, J. Appl. Polym. Sci., 1994, 52, 649-662
34.Pyda, M., Boller, A., Grebowicz, J., Chuah, H., Lebedev. B. V., Wunderlich, B., “Heat-Capacity of Poly(trimethylene terephthalate),” J. Polym. Sci. Part B Polym. Phys., 1998, 36, 2499-2511
35.Kim, Y. H., Kim, K. J., Lee, K. M.,”Melting and Non-isothermal Crystallization Behaviors of Poly(trimethylene terephthalate)”, J. Korean Fiber Soc., 1997, 34, 860-867
36.Sperling, L. H., “Introduction to Polymer Science”, 2nd ,Wiley-Interscience Publication, New York, 1992, p.357-358
37.Li, B., Yu, J., Lee, S., Ree, M., “Crystallization of Poly(ethylene terephthalate co ethylene isophthalate)”, Polymer, 1999, 40, 5371-5375
38.Wendlandt, W. W., Thermal analysis, 3rd, New York, Wiley-Interscience, 1986
39.Reading, M., “Modulated DSC- A New Way Forward in Materials Characterization”, Trends Polym. Sci. , 1993, 8, 248-253
40.TA Instruments , Applications Library, TN45 and TA210
41.Sauer, B. B., Kampert, W. G., Neal Blanchard, E., Threefoot, S. A., Hsiao, B. S., “Temperature Modulated DSC Studies of Melting and Recrystallization in Polymers Exhibiting Multiple Endotherms”, Polymer, 2000, 41, 1099-1108
42.Wang, Y., Lu, J., Shen, D., “Calorimetric and Infrared Spectroscopic Analysis of Muiliple Melting Endotherms of Poly(ethylene terephthalate),” Polym. J., 2000, 32, 560-566
43.Wang, Z.-G., Hsiao, B. S., Sauer, B. B., Kampert, W. G., ”The Nature of Secondary Crystallization in Poly(ethylene terephthalate)”, Polymer, 1999, 40, 4615-4627
44.Poulin-Dandurand, S., Perez, S., Revol, J.-F., Brisse, F., “The Crystal Structure of Poly(trimethylene terephthalate) by X-ray and Electron Diffraction”, Polymer, 1979, 20, 419-426
45.Deborough, I. J. Hall, I. H. Neisser, J. Z., “The Structure of Poly(trimethylene terephthalate)”, Polymer, 1979, 20, 545-552
46.Brandup, J., Immergut, E. H., Polymer Handbook, 3rd, NewYork, John Wiley, 1989 , p.V/103
47.董炎明, 高分子材料實用技術剖析, 中國石化出版社, 北京, 1997, Ch.7.
48.Skoog, D. A., Leary, J. L., Principles of Instrumental Analysis, 4th, Saunders College Pub., New York, 1992
49.Ward, I. M., Wilding, M.A., “Infra-red and Raman Spectra of Poly(m-methylene terephthalate) Polymers”, Polymer, 1977, 18, 327-335
50.Miyake, A., “The Infrared Spectrum of Polyethylene Terephthalate. Ⅰ.The Effect of Crystallization”, J. Polym. Sci., 1959, 38, 479-495
51.Bulkin, B. J., Lewin, M., McKelvy, M. L., “Crystallization Kinetics of Poly(ethylene terephthalate) Studied by Rapid Scanning Raman Spectroscopy”, Spectrochim. Acta, 1985, 41, 251-261
52.Bulkin, B. J., Lewin, M., Kim, J., “Crystallization Kinetics of Poly(propylene terephthalate) Studied by Rapid-Scanning Raman Spectroscopy and FT-IR Spectroscopy”, Macromolecules, 1987, 20, 830-835
53.Galli, R., Canetti, M., Sadocco, P., Seves, A., Vicini, L., “Preoriented Poly(ethylene terephthalate) Yearns: Influence of the Gauche-Trans Transformation on Crystallization”, J. Polym. Sci. Polym. Phys. Ed., 1983, 21, 717-723
54.Lin, S. B., Koenig, J. L., “Spectroscopic Characterization of the Rotational Conformations in the Disordered Phase of Poly(Ethylene-Terephthalate)”, J. Polym. Sci. Polym. Phys. Ed., 1982, 20, 2277-2295
55.Wang, Y., Lu, J., Shen, D., Qian, R., “Subglass-Transtion-Temperature Annealing of Poly(ethylene terephthalate) Studied by FTIR”, J. Polym. Sci. Polym. Phys. Ed., 1998, 36, 783-788
56.Schmidt-Rohr, K., Hu, W., Zumbulyadis, N., “Elucidation of the Chain Conformation in a Glassy Polyester, PET, by Two-Dimensional NMR”, Science, 1998, 280, 714-717
57.Qiu, G., Tang, Z.-L., Huang N.-X., Gerking, L., “Dual Melting Endotherms in The Thermal Analysis of Poly(ethylene terephthalate)”, J. Appl. Polym. Sci., 1998, 69, 729-742
58.Hong, P. D., Chung, W. T., Hsu C. F., “Crystallization Kinetics and Morphology of Poly(trimethylene terephthalate)”, Polymer, 2002, 43, 3335-3343
59.Ju, M.-Y., Chang, F.-C., “Multiple Melting Behavior of Poly(bultylene-2,6-naphthalate)”, Polymer, 2001, 42, 5037-5045
60.王惠貞, “PET-PTT共聚酯的順序結構、結晶與熔融行為”, 碩士論文, 2002, 國立中山大學材料學所
61.Kim, K. J.; Bae, J. H.; Kim, Y. H., ”Infrared Spectroscopic Analysis of Poly(trimethylene terephthalate)”, Polymer, 2001, 42, 1023-1033
62.Cole, K. C., Ajji, A., Pellerin, É., “New Insights into the Development of Ordered Structure in Poly(ethylene terephthalate). 1. Results from External Reflection Infrared Spectroscopy”, Macromolecules, 2002, 35, 770-784
63.Ko, C.-Y., Chen, M., personal communication
Johnston, N. W., “Squence Distribution-Glass Transition Effects. III. α-Methylstyrene-Acrylonitrile Copolymers”, Macromolecules, 1973, 6, 453-456

參考文獻(第二部分)
1.瀧山榮一郎, “不飽和聚酯樹酯”, 復漢出版社, 台南, 1976
2.陳冠榮主編, 化工百科全書, Vol. 9, 化學工業出版社, 北京, 1995
3.Carothers, W. H., Arvin, J. A., “Studies of Polymerization and Ring Formation. II. Poly-ester”, J. Am. Chem. Soc., 1929, 51, 2560-2570
4.Curtis, L. G., Eswards, D., L., Simons, R. M., Trent, P. J., Von Bramer, P. T., “Investigation of Maleate-Fumarate Isomerization in Unsaturated Polyesters by Nuclear Magnetic Resonance”, Ind. Eng. Chem. Prod. Res. Dev., 1964, 3, 218-221
5.Allen, S. G., Bevington, J. C., “Comprehensive Polymer Science”, Vol. 5, Pergamon Press, Oxford, 1989, p.331-344
6.Khramova, T. S., Urman, Y. G., Avdeyeva, G. M., Sedov, L. N., Slonim, I. Y., “The Nuclear Magnetic Resonance (NMR) Study of Unsaturated Polyesters. Chain Composition and Structure”, Vysokomol. Soyed., 1973, A15, 148-152
7.De La Caba, K., Guerrero, P., Eceiza, A., Mondragon, I., “Kinetic and Rheological Studies of Two Unsaturated Polyester Resins Cured at Different Temperature”, Eur. Polym. J., 1977, 33, 19-23
8.Pandit, S. B., Nadkarni, V. M., “Toughening of Unsaturated Polyesters by Reactive Liguid Polymers. 1. Synthesis and Characterization of the Modifers”, Ind. Eng. Chem. Res., 1993, 32, 3089-3099
9.Yang, Y. S., Lee, L. J., “Microstructure Formation in the Cure of Unsaturated Polyester Resins”, Polymer, 1988, 29, 1793-1800
10.Horie, K., Mita, I., Kambe, H., “Calorimetric Investigation of Polymerization Reactions. II. CoPolymerization of Diethyl Fumarate with Styrene”, J. Polym. Sci. Part A-1, 1969, 7, 2561-2573
11. Lewis, F. M., Mayo, F. R., “Coplymerization. IX. A Comparison of Some cis and trans Isomers”, J. Am. Chem. Soc., 1948, 70, 1533-1536
12.孟季茹, 趙磊, 梁國正, 秦準宇, “不飽和聚酯樹酯氧化還原引發體系的最新進展”, 熱固性樹酯, 2001, 16, 34-37
13.康瀠丹, 朱玉紅, 武士威, “UP樹酯室溫固化體系的影響因素及進展概述”, 瀋陽師範學院學報(自然科學版), 2001, 19, 40-44
14.Agrawal, J. P., Chouk, M. P., Satpute R. S., Bhale, V. C., “A Comparative Account of Properties of Novel Unsaturated Polyesters Synthesized by Different Polyesterification Processes”, J. Polym. Sci.: Part A: Polym. Chem, 1989, 27, 409-421
15.Agrawal, J. P., Bouzon, J., Vergnaud, J. M., “Modelling of Nitroglycerine and Water Migration Behaviour through Unsaturated Chloropolyesters”, Polymer, 1989, 1488-1492
16.Agrawal, J. P, Armand, J. Y., Vergnaud, J. M.,” Prediction of the State of Cure of an Unsaturated Polyester by Differential Scanning Calorimetry and Investigation of Its Variation with Temperature and Kinetic Parameters”, Thermochim. Acta, 1989, 149, 93-100
17.Agrawal, J. P., “Prediction of Gel Time and Exotherm Peak Temperature of Unsaturated Polyester and Chloropolyester Blends”, Eur. Polym. J., 1988, 24, 93-97
18.Agrawal, J. P., “Kulkarni, K. S., “Tetrachlorophthalic Anhydride-based Flame-retardant Chloropolyesters for Inhibition of Double-base Propellants”, J. Polym. Appl. Sci., 1986, 32, 5203-5214
19.Braun, D., Cherdron, H., Kern, W., “Techniques of Polymer Syntheses and Characterization”, Wiley-Interscience, New York, 1972, Ch. 4
20.楊智傑, “飽和聚酯型抗收縮劑之合成及其對苯乙烯/不飽和聚酯/抗收縮劑系統之相溶性影響研究”, 碩士論文, 國立台灣科技大學, 2001
21.Huang, Y-J., Jiang, W-C., “Effects of Chemical Composition and Structure of Unsaturated Polyester Resins on the Mechanical Properties for Styrene/ Unsaturated Polyester/Low-profiles Additive Ternary Systems. 1: Miscibility and Cured Sample Morphology:, Polymer, 1998, 39, 6631-6641
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code