Responsive image
博碩士論文 etd-0910106-190919 詳細資訊
Title page for etd-0910106-190919
論文名稱
Title
砷化鎵基板長波長半導體雷射元件及相關材料光性與結構之研究
The study of optical property and structural characteristic on GaAs-based long-wavelength semiconductor laser device and its related materials
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-28
繳交日期
Date of Submission
2006-09-10
關鍵字
Keywords
量子點、波長、溫度、敏感、擴散
Quantum Dot, Wavelength, Temperature, Diffusion, Sensitivity
統計
Statistics
本論文已被瀏覽 5648 次,被下載 0
The thesis/dissertation has been browsed 5648 times, has been downloaded 0 times.
中文摘要
半導體的能隙會隨著溫度上升而變小,導致半導體雷射的發光波長會隨著工作溫度上升而造成紅位移之現象,因此如何穩定雷射發光波長而不受工作環境溫度影響便成為關鍵課題;另外,量子點在成長時容易隨著溫度上升而發生組成擴散的現象,並造成事後發光波長的位移,如何在形成量子點的過程中,抑制其組成成份的擴散,也同樣是開發半導體雷射元件中的重要的議題。
本實驗乃是利用分子束磊晶儀以InAs/GaAsN數位合金量子井的方式來成長半導體雷射元件的主動層。數位合金在高應力的作用下會在量子井中自我組成量子點。本實驗發現當量子點的尺寸大小或組成比例分佈越寬廣,則載子會傾向於往較低的能階聚集,導致發光波長的峰值會隨著溫度降低往長波長的方向位移,該現象與根據Varshni Equation之能隙隨著溫度上升而變小的基本趨勢是呈現反態,因此有助於發光波長對溫度變化的不敏感;利用較高的As蒸氣壓之成長條件,將會使InAs量子點在量子井內形成時,其尺寸分佈變的更為寬廣,最後造成量子點發光波長對溫度的不敏感性。此外,量子點中的應變分佈會隨溫度而改變,其結果也會影響發光波長對溫度的敏感度;因此在 InAs量子點成長完後,隨即覆蓋一層InAlAs量子井,可以用來避免InAs量子點因後續高溫成長過程所導致的擴散行為,進而改善量子點成份和尺寸變化所造成之發光波長位移的窘境。
本論文成功的開發出對溫度不敏感半導體雷射元件中的雷射主動層材料,同時也探討了這個現象的機制。實驗的結果提供了下一世代對溫度不敏感雷射元件製作的重要參考。
Abstract
The bandgaps of semiconductors are decreased with increasing temperature which leads to the red-shift lasing wavelength of semiconductor lasers. Therefore, how to stabilize the lasing wavelength under different working temperatures becomes an important issue. The composition and size variation of quantum dots are additional factors which affect the lasing wavelength shift. It is well known that diffusion speeds up with increasing temperature and causes the wavelength shift to occur. To avoid the change of composition and size of quantum dots during growth, the suppression of the diffusion process is necessary to ensure the quantum dots to have a well preserved initial stage.
The laser active region with InAs/GaAsN digital alloy quantum well structure was grown by molecular beam epitaxy in this experiment. The self-assembled quantum dots formed in the digital alloy quantum well under high stress. The carriers congregated in the lower energy levels with broadening distribution of composition and size of quantum dots. The peak wavelength shifted toward a longer wavelength with decreasing temperature. The behavior was contrary to the Varshni equation with shrinking bangaps under increasing temperature. Therefore, the sensitivity of the wavelength with temperature decreased. The size distribution of InAs quantum dots on the gradient quantum well broadened under higher arsenic pressure. Consequently, the wavelength sensitivity of quantum dots with temperature decreased. Finally, the InAs quantum dots were capped with the InAlAs quantum well to avoid the diffusion during high temperature growth. The capped InAs quantum dots prevented the wavelength shift from the composition and size variation of quantum dots.
For the reason of stabilizing the lasing wavelength of the long wavelength semiconductor laser in optical communication system, it becomes an important topic to create new materials for the active region of the laser structure to avoid the lasing wavelength shift. The next generation temperature insensitive laser devices will be produced with the method which was created in this experiment.
目次 Table of Contents
致謝............................................I
論文摘要.......................................II
英文摘要......................................III
目錄...........................................IV
圖目錄.........................................VI
表目錄.........................................XI
1. 研究動機與目的...............................1
2. 實驗儀器.....................................5
3. 實驗分析與研究..............................14
3.1 砷化銦/氮砷化鎵銦 數位合金量子井.......... 14
3.1.1 前言.....................................14
3.1.2 實驗步驟.................................28
3.1.3 實驗結果.................................32
3.1.4 討論.....................................49
3.1.5 結論.....................................53
3.2 砷化鋁鎵銦 覆蓋層/砷化銦 量子點............56
3.2.1 前言.....................................56
3.2.2 實驗步驟.................................58
3.2.3 實驗結果.................................60
3.2.4 討論.....................................64
3.2.5 結論.....................................66
3.3 砷化銦 量子點/砷化鎵銦 應變緩衝層......... 68
3.3.1 前言.....................................68
3.3.2 實驗步驟.................................71
3.3.3 實驗結果.................................73
3.3.4 討論.....................................80
3.3.5 結論.....................................82
4. 總結........................................84
參考文獻與書目.................................89
附錄...........................................93
參考文獻 References
[1] M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, K. Uomi, IEEE J. Select. Topics Quantum Electron. 3, 719 (1997)
[2] M. Kondow, T. Kitatani, K. Nakahara, T. Tanaka, IEEE Photon. Technol. Lett. 12, 777 (2000)
[3] I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)
[4] D. E. Wohlert, K. Y. Cheng, S. T. Chou, Appl. Phys. Lett. 78, 1047 (2001)
[5] D. E. Wohlert, S. T. Chou, A. C. Chen, K. Y. Cheng, K. C. Hsieh, Appl. Phys. Lett.. 68, 2386 (1996)
[6] D. E. Wohlert, K. Y. Cheng, Appl. Phys. Lett. 76, 2247 (2000)
[7] S. T. Chou, K. Y. Cheng, L. J. Chou, K. C. Hsieh, J. Appl. Phys. 78, 6270 (1995)
[8] D. E. Wohlert, S. T. Chou, K. Y. Cheng, J. Cryst. Growth 175, 1167 (1997)
[9] S. T. Chou, K. C. Hsieh, K. Y. Cheng, L. J. Chou, J. Vac. Sci. Technol. B 13, 650 (1995)
[10] D. E. Wohlert, A. M. Moy, L. J. Chou, K. Y. Cheng, K. C. Hsieh, J. Vac. Sci. Technol. B 16, 1352 (1998)
[11] N. N. Ledentsov, IEEE J. Select. Topics Quantum Electron. 8, 1015 (2002)
[12] V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, Appl. Phys. Lett. 74, 2815 (1999)
[13] S. Raghavan, P. Rotella, A. Stintz, K. J. Malloy, S. Krishna, A. L Gray, J. Cryst. Growth 247, 269 (2003)
[14] J. Miguel-Sánchez, A. Guzmán, E. Muñoz, Appl. Phys. Lett. 85, 1940 (2004)
[15] Y. G. Hong, A. Yu. Egorov, C. W. Tu, J. Vac. Sci. Technol. B 20, 1163 (2002)
[16] I. Vurgaftman, J. R. Meyer, J. Appl. Phys. 94, 3675 (2003)
[17] S. J. Kim, H. Asahi, M. Takernoto, K. Asami, J. H. Noh, S. Gonda, J. Cryst. Growth 175, 754 (1997)
[18] S.-J. Kim, H. Asahi, K. Asamim, I. Takemoto, M. Fudeta, S. Gonda, Jpn. J. Appl. Phys. 37, 1540 (1998)
[19] M. Fudeta, H. Asahi, S.-J. Kim, J.-H. Noh, K. Asami, S. Gonda, Jpn. J. Appl. Phys. 38, 1078 (1999)
[20] D. Watanabe, H. Asahi, J.-H. Noh, M. Fudeta, J. Mor, S. Matsuda, K. Asahi, S. Gonda, Jpn. J. Appl. Phys. 39, 4601 (2000)
[21] A. C. Chen, A. M. Moy, P. J. Pearah, K. C. Hsieh, K. Y. Cheng, Appl. Phys. Lett. 62, 1359 (1993)
[22] J.-Y. Leem, M. Jeon, J. Lee, G. Cho, C.-R. Lee, J. S. Kim, S.-K. Kang, S. I. Band, J. I. Lee, H. K. Cho, J. Cryst. Growth 252, 493 (2003)
[23] V. A. Kulbachinskii, R. A. Lunin, V. A. Rogozin, N. B. Brandt, V. G. Mokerov, Y. V. Fedorov, Y. V. Khabarov, Physica E. 17, 300 (2003)
[24] S. Matsuda, H. Asahi , J. Mori, D. Watanabe, K. Asami, Jpn. J. Appl. Phys. 40, L586 (2001)
[25] R. D. Twesten, Phys. Rev. B. 60, 13619 (1999)
[26] I. Suemune, K. Uesugi, Appl. Phys. Lett. 77, 3021 (2000)
[27] H. P. Xin, K. L. Kavanagh, Z. Q. Zhu, C. W. Tu, Appl. Phys. Lett. 74, 2337 (1999)
[28] M. Albrecht, V. Grillo, T. Remmele, H. P. Strunk, Appl. Phys. Lett. 81, 2719 (2002)
[29] Sho Shirakata, Appl. Phys. Lett. 80, 2087 (2002)
[30] A. Sasakia, K. Nishizuka, T. Wang, S. Sakaic, A. Kaneta, Y. Kawakami, Sg. Fujita, Solid State Communications 129, 31 (2004)
[31] H. Y. Liu, Appl. Phys. Lett. 83, 3716 (2003)
[32] A. Madhukar, Q. Xie, P. Chen, A. Konkar, Appl. Phys. Lett. 64 , 2727 (1994)
[33] J. Ibáñez, R. Cuscó, L. Artús, Appl. Phys. Lett. 88, 141905 (2006)
[34] C. M. Tey, H. Y. Liu, A. G. Cullis, I. M. Ross, M. Hopkinson, J. Cryst. Growth 285, 17 (2005)
[35] Z. Y. Zhang, P. Jin, Ch. M. Li, X. L. Ye, X.Q. Meng, B. Xu, F. Q. Liu, Z. G. Wang, J. Cryst. Growth 253, 59 (2003)
[36] Y. C. Zhang, Z. G. Wang, B. Xu, F. Q. Liu, Y. H. Chen, P. Dowd, J. Cryst. Growth 244, 136 (2002)
[37] M. O. Lipinski, H. Schuler, O. G. Schmidt, K. Eberl, N. Y. Jin-Phillipp, Appl. Phys. Lett., 77, 1789 (2000)
[38] T. Uragami, A. S. Acosta, H. Fujioka, T. Mano, J. Ohta, H. Ofuchi,
M. Oshima, Y. Takagi, M. Kimura, T. Suzuki, J. Cryst. Growth 234, 197 (2002)
[39] B. C. Lee, S. D. Lin, C. P. Lee, H. M. Lee, J. C. Wu, K. W. Sun, Appl. Phys. Lett. 80, 326 (2002)
[40] W. Zhang, K. Uesugi, I. Suemune, J. Appl. Phys. 99, 103103 (2006)
[41] K. Sears, H. H. Tan, J. Wong-Leung, C. Jagadish, J. Appl. Phys. 99, 044908 (2006)
[42] K. Mukai, M. Sugawara, J. Appl. Phys. 74, 3963 (1999)
[43] R.-M. Lin, S.-C. Lee, H.-H. Lin, Y.-T. Dai, Y.-F. Chen, J. Cryst. Growth 227, 1034 (2001)
[44] Z. H. Zhang, K. Y. Cheng, J. Vac. Sci. Technol. B 22, 1508 (2004)
[45] Y. T. Dai, J. C. Fan, Y. F. Chen, J. Appl. Phys. 82, 4489 (1997)
[46] Yu. I. Mazur, X. Wang, Z. M. Wang, G. J. Salamo, and M. Xiao, Appl. Phys. Lett. 81, 2469 (2002)
[47] 沈柏平,「氮砷化銦鎵半導體量子井光譜之研究」,碩士論文,國立中山大學光電工程研究所 (2003)
[48] 龔國閔,「氮砷化銦鎵半導體光放大器及量子井混合之研製」,碩士論文,國立中山大學光電工程研究所 (2004)
[49] 莊貴雅,「奈米量子點之光電特性研究」, 碩士論文,國立中山大學光電工程研究所 (2005)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.221.41.214
論文開放下載的時間是 校外不公開

Your IP address is 18.221.41.214
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code