Responsive image
博碩士論文 etd-0910107-122031 詳細資訊
Title page for etd-0910107-122031
論文名稱
Title
非均質碳纖維雙極板與傳統硬質表面雙極板流道結構對 PEMFC 流場及性能影響之數值研究
Numerical Studies of the Effects of the Flow Channel Structures of Heterogeneous Composite Carbon Fiber Bipolar Plates and Traditional Hard Surface Bipolar Plates on the PEMFC Flow Field and Performance
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
165
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-30
繳交日期
Date of Submission
2007-09-10
關鍵字
Keywords
燃料電池、蛇型流道、非均質碳纖維雙極板、平行流道
Heterogeneous Composite Carbon Fiber Bipolar Plates, PEM Fuel Cell, Parallel flow channel, Serpentine flow channel
統計
Statistics
本論文已被瀏覽 5659 次,被下載 0
The thesis/dissertation has been browsed 5659 times, has been downloaded 0 times.
中文摘要
本文以三維數學模型,探討燃料電池內部反應物與生成物之流動與分布,此外並比較非均質碳纖維雙極板與一般硬質表面雙極板,在不同流道設計下,對燃料電池性能之影響。模擬結果顯示,不管蛇型或平行流道,非均質碳纖維雙極板均有較好的性能表現,主要因非均質碳纖維雙極板肋條為多孔性材質,不論在流道區或肋條區反應物與生成物皆較容易進出,使電池內部氣體分布更加均勻;但在傳統硬質表面雙極板中,由於肋條與交換膜間反應物及生成物僅能從擴散層側向進出反應區,故肋條區反應不佳性能較差。另外在流道結構模擬研究中發現,單進口蛇型流道在高電流密度下,由於其有較好的對流效應可強迫反應物流到整個反應區,故比單進口平行流道有較好的性能表現。本文也同時探討了不同操作條件對燃料電池性能的影響,模擬結果顯示,較高之燃料供應當量數、操作壓力與陽極端燃料適當加濕對電池性能有提升的效果。
Abstract
In this study a three-dimensional mathematical model is developed to simulate the flow field and mass transfer in a PEM fuel cell. In the model, the effects of the different flow channel structures in heterogeneous composite carbon fiber bipolar plates and traditional hard surface bipolar plates on the performance are studied. The results show that, the cell performance with the heterogeneous composite carbon fiber bipolar plates have better performance than that with the traditional hard surface bipolar plates, whether in the parallel flow channel structures or the serpentine flow channel structures. The reason is that, the heterogeneous composite carbon fiber ribs are porous material, so it allows the reactants and products transport uniformly even in the rib zone. This greatly improved the mass transfer and the gases distribution in the fuel cell. With the traditional bipolar plates, the reactants can only enter the reaction zone from the side of carbon cloth under ribs, so that the performance in this area under rib is relatively poor. In the simulation of the flow channel structures, we detect that, due to the single inlet serpentine flow channel have stronger convective effects that forced reactants to flow through the whole reaction zones, so it has better performance at high current density than in the singles inlet parallel flow channel. In addition, the results also show that, higher fuel stoichiometric number and operated pressure and properly humidified at anode will all improve the performance of the fuel cell.
目次 Table of Contents
目錄 I
圖目錄 IV
表目錄 X
摘要 XI
Abstract XII
符號說明 XIV
第一章 緒論 1
1.1 前言 1
1.2 燃料電池種類 2
1.3 質子交換膜燃料電池架構 5
1.4 質子交換膜燃料電池的工作原理 5
1.4.1 反應效率 6
1.4.2 電池理論燃料消耗量 7
1.5 研究背景與目的 9
第二章 文獻回顧 15
第三章 理論分析 21
3.1 模型假設 21
3.2 統御方程式 21
3.2.1 質量守恆 22
3.2.2 動量守恆 24
3.2.3 成分守恆 25
3.2.4 電量守恆 27
3.2.5 質子交換膜內部水含量之探討 31
3.2.6碳纖維肋條孔隙探討 33
3.3 邊界條件設定 34
第四章 模擬設定 36
4.1 數值方法 36
4.2 解題流程 43
4.3 模型參數設定 44
4.4 格點獨立測試 45
第五章 結果與討論 53
5.1 實驗數據驗證 53
5.2 物理模型 53
5.3 平行流道質傳現象與流場分布探討 55
5.3.1 流道結構對壓力場與速度場之影響 55
5.3.2 流道結構對各濃度場之影響 58
5.3.3 流道結構對質子交換膜內部水含量與電流密度分布之影響 59
5.4 蛇型流道質傳與流場分布探討 61
5.4.1流道結構對壓力場與速度場之影響 61
5.4.2流道結構對各濃度場之影響 64
5.4.3 流道結構對質子交換膜內部水含量與電流密度分布之影響 65
5.5 平行流道與蛇型流道性能之比較 66
5.6 孔隙率對燃料電池性能之影響 68
5.7 操作與設計條件對燃料電池性能之影響 68
第六章 結論 139
6.1結論 139
6.2 未來可進行之工作與建議 140
參考文獻 142
參考文獻 References
1. 周宣任,質子交換膜料電池 MEA 之理論模擬與分析,碩士論文,國立中山大學機械工程研究所,中華民國九十一年六月。
2. 葉芸瑄,直接甲醇燃料電池 MEA 之理論模擬與分析,碩士論文,國立中山大學機械工程研究所,中華民國九十三年六月。
3. 王啟銀,非均質碳纖維雙極板與硬質表面雙極板應用在質子交換膜燃料電池時對流場影響之理論研究與數值模擬,碩士論文,國立中山大學機械工程研究所,中華民國九十五年六月。
4. Long-Jeng Chen, Ming-San Lee, A Stack Design for Portable Direct Methanol Fuel Cell-Based on the Newly Developed Heterogeneous Composite Bipolar Plate, Second International Conference on Fuel Cell Science, Engineering and Technology.
5. Ming-San Lee, Long-Jeng Chen, Zheng-Ru He, and Shih-Hong Yang, The Development of A Heterogeneous Composite Bipolar Plate of A Proton Exchange Membrane Fuel Cell, Journal of Fuel Cell Science and Technology(2005).
6. 張志安,從燃料與氧化劑供輸上探討非均質碳纖維雙極板應用在燃料電池的特性研究,碩士論文,國立中山大學機械工程研究所,中華民國九十四年七月。
7. Woo-kum Lee, Chien-Hsien Ho,1, J.W. Van Zee, Mahesh Murthy, The effects of compression and gas diffusion layers on the erformance of a PEM fuel cell, Journal of Power Sources 84(1999)45–51.
8. Galip H. Guvelioglu, Harvey G. Stenger, Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells, Journal of Power Sources 147(2005)95–106.
9. J.J. Hwang, P.Y. Chen, Heat/mass transfer in porous electrodes of fuel cells International Journal of Heat and Mass Transfer 49(2006)2315–2327.
10. J.J. Hwang, S.J. Liu, Comparison of temperature distributions inside a PEM fuel cell with parallel and interdigitated gas distributors, Journal of Power Sources 162(2006)1203–1212.
11. J.J. Hwang, Heat Transfer in a Porous Electrode of Fuel Cells , Transactions of the ASME, Journal of Heat Transfer MAY 2006, Vol. 128 434-443.
12. F. Barreras, A. Lozano, L. Valino, C. Marın, A. Pascau, Flow distribution in a bipolar plate of a proton exchange membrane fuel cell: experiments and numerical simulation studies, Journal of Power Sources 144(2005)54–66.
13. Jer-Huan Jang, Wei-Mon Yan, Chinh-Chang Shih, Numerical study of reactant gas transport phenomena and cell performance of proton exchange membrane fuel cells, Journal of Power Sources 156(2006) 244–252.
14. S. Dutta, S. Shimpalee1 and J.W. Van Zee, Three-dimens- ional numerical simulation of straight channel PEM fuel cells, Journal of Applied Electrochemistry 30: 135–146, 2000.
15. Fang-Bor Weng, Ay Su, Guo-Bin Jung, Yen-Chiao Chiu, Numerical prediction of concentration and current distributions in PEMFC, Shih-Hung Chan, Journal of Power Sources 145(2005)546–554.
16. 涂正輝,質子交換膜燃料電池之三維流道設計與熱質傳分析,碩士論文,國立成功大學機械工程學系,中華民國九十二年七月。
17. E. Hontanon, M.J. Escudero, C. Bautista, P.L. Garcıa-Ybarra, L. Daza, Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques, Journal of Power Sources 86(2000)363–368.
18. Jie Peng, Seung Jae Lee, Numerical simulation of proton exchange membrane fuel cells at high operating temperature, Journal of Power Sources 162(2006)1182–1191.
19. Phong Thanh Nguyen, Torsten Berning1, Ned Djilali, Computational model of a PEM fuel cell with serpentine gas flow channels, Journal of Power Sources 130 (2004)149–157.
20. Guilin Hu, Jianren Fan, Song Chen, Yongjiang Liu, Kefa Cen, Three-dimensional numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields, Journal of Power Sources 136(2004)1–9.
21. A. Kazim, Modeling of performance of PEM fuel cells with conventional and interdigitated flow filed, Journal of Applied Electrochemistry, Vol. 29, pp.1409-1416(1999).
22. B.R. Sivertsen, N. Djilali, CFD-based modelling of proton exchange membrane fuel cells, Journal of Power Sources 141(2005)65–78.
23. C.Y. Soong, W.M. Yan, C.Y. Tseng, Analysis of reactant gas transport in a PEM fuel cell with partially blocked fuel flow channels, H.C. Liu, Falin Chen,H.S. Chu, Journal of Power Sources 143(2005)36–47.
24. J. J. Hwang, Species-Electrochemical Modeling of an Air-Breathing Cathode of a Planar Fuel Cell, Journal of The Electrochemical Society, 153 _8_ A1584-A1590(2006).
25. J.J. Hwang, S.D. Wu, L.K. Lai, C.K. Chen, D.Y. Lai, Effect of breathing-hole size on the electrochemical species in a free-breathing cathode of a DMFC , Journal of Power Sources 161(2006)240–249.
26. J.J. Hwang , S.D. Wu , R.G. Pen , P.Y. Chen, C.H. Chao, Mass/electron co-transports in an air-breathing cathode of a PEM fuel cell , Journal of Power Sources 160(2006)18–26.
27. T. Berning, N. Djilali, Three-dimensional computational analysis of transport phenomena in a PEM fuel cell—a parametric study, J. Power Sources 124(2003)440–452.
28. A. Parthasarathy, S. Srinivasan, A.J. Appleby, Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/nafion interface—a microelectrode investigation, J. Electrochem.,Soc. 139(1992)2530–2537.
29. T.A. Zawodzinski T.E. Springer and S. Gottesfeld. J. Electro- chemical Soc., 138.
30. Sandip Dutta, Sirivatch Shimpalee, J.W. Van Zee, Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell, International Journal of Heat and Mass Transfer 44(2001)2029-2042.
31. Patankar, S. V., and Spaldong, D. B., A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transfer, Vol. 15, 1972, pp. 1787-1806.
32. P. Atkins, Physical Chemistry, Oxford University Press, Oxford (1994).
33. C. Ziegler, H. M. Yu, and J. O. Schumacher, Two-Phase Dynamic Modeling of PEMFCs and Simulation of Cyclo-Voltammograms, Journal of The Electrochemical Society, 152(8)A1555-A1567 (2005)Acta, 48, 4175(2003).
34. E. Carcadea, H. Ene , D.B. Ingham ,T, R. Lazar , L. Ma ,M. Pourkashanian, I. Stefanescu, Numerical simulation of mass and charge transfer for a PEM fuel cell, International Communications in Heat and Mass Transfer 32(2005)1273–1280.
35. L. Wang, A. Husar, T. Zhou, H. Liu, A parameteric study of PEM fuel cell performances, Int. J. Hydrogen Energy 28(2003)1263–1272.
36. J. H. Nam and M. Kaviany, Int. J. Heat Mass Transfer, 46, 4595(2003).
37. A. Weber and J. Newman, J. Electrochem. Soc., 151, A311(2004).
38. 蕭韋明,非均質碳纖維雙極板在不同流道設計下反應物之流動特性對PEMFC性能影響之實驗研究,碩士論文,國立中山大學機械工程研究所,中華民國九十五年六月。
39. Http://www.fpc.com.tw
40. Yuyao Shan, Song-Yul Choe, A high dynamic PEM fuel cell model with temperature effects, Journal of Power Sources 145(2005)30–39.
41. U. Pasaogullari and C. Y. Wang, J. Electrochem. Soc., 151, A399(2004).
42. Http://www.etek-inc.com
43. Tronlead Technology co., ltd
44. P. Gode, F. Jaouen, G. Lindbergh, A. Lundblad, and G. Sundholm, Electrochim.
45. W. Vielstich, A. Lamm, and H. Gasteiger, Handbook of Fuel Cells, Wiley, New York(2003).
46. 廖明祥,質子交換膜燃料電池含溫濕度控制之參數最佳化分析與電池製作,碩士論文,國立中山大學機械工程研究所,中華民國九十一年六月。
47. Pei-Wen Li, Laura Schaefer, Qing-Ming Wang, Tao Zhang, Minking K. Chyu, Multi-gas transportation and electrochemical performance of a polymer electrolyte fuel cell with complex flow channels, Journal of Power Sources 115(2003)90–100.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 107.21.176.63
論文開放下載的時間是 校外不公開

Your IP address is 107.21.176.63
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code