Responsive image
博碩士論文 etd-0910107-182607 詳細資訊
Title page for etd-0910107-182607
論文名稱
Title
聖嬰年間長江沖淡水在台灣海峽之消長及台灣週遭水域之N2O分佈研究
Changjiang Diluted Water in Taiwan Strait during El Nino and the N2O distribution in natural waters around Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
187
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-11
繳交日期
Date of Submission
2007-09-10
關鍵字
Keywords
聖嬰現象、長江沖淡水、鋒面、台灣海峽、南海、西菲律賓海
front, South China Sea, Taiwan Strait, West Philippine Sea, Nitrous oxide, Changjiang Diluted Water, El Nino
統計
Statistics
本論文已被瀏覽 5633 次,被下載 767
The thesis/dissertation has been browsed 5633 times, has been downloaded 767 times.
中文摘要
聖嬰現象對全球氣候變遷所造成的影響是當今重要的議題,但是其對台灣氣候的影響尚不明顯,更難以釐清其與海洋或大氣之間的關係,因此值得我們進一步研究。台灣海峽連接南海與東海兩大邊緣海,是海水物質交換的重要通道,水流受到東亞季風的影響大:一般而言,冬季東北風強勁,海峽南部的暖水北流受限,但低溫、高營養鹽的長江沖淡水南下。聖嬰現象生發時,台灣北部春、秋兩季的南風減弱,長江沖淡水藉由北風加強向南傳送,海水表溫因此更為降低;夏季則呈現相反的現象。
新竹外海側線的溫鹽圖發現有黑潮水的高鹽現象,顯示黑潮水由台灣東北角繞入台灣海峽,此黑潮水在與台灣海峽北流水和冬天南下的長江沖淡水之間有鋒面存在。觀察台灣海峽北部航次的鋒面變化,發現受到長江沖淡水影響的春季及秋季在溫度較低時的鋒面較偏東,沒有受到長江沖淡水影響的夏天則較不明顯。此外,在相同月份聖嬰現象發生時鋒面皆有東移的現象,夏天更為明顯,且其受到長江沖淡水遺留和黑潮水的影響亦比正常年少。
台灣海峽北部正常年鋒面東側的鹽度由春季到冬季有逐漸降低的趨勢,受到黑潮水影響較大的春季其湧升訊號在鋒面以東,夏季到冬季皆恰好位於鋒面上。此外,比較三峽大壩蓄水前後對台灣海峽北部的NO3-+NO2-和PO4-濃度之影響,發現蓄水後的N/P比蓄水前略高。
N2O是溫室氣體之一,對全球氣候的影響甚大,而目前台灣附近河川湖泊及沿海等水體的N2O分佈較少有人研究。台灣海峽表水平均N2O濃度與海-氣通量(7.81±1.28nM;0.28±0.38μmol/m2/hr)均比南海(7.55±2.45 nM;0.21±0.27μmol/m2/hr)和西菲律賓(5.30±0.62nM;-0.20±0.25μmol/m2/hr)高。而菲律賓海是目前少數發現有N2O未飽和現象的海域。南海由於內部湧升較強,其N2OMax的深度(600~800m)較西菲律賓海(1000m)淺,此外,南海400-1000m附近有N2O異常高值,推測是來自大陸斜坡上沉積物脫硝後的釋放。將南海及西菲律賓海的N2O通量換算成等單位的二氧化碳通量,發現其所造成的溫室效應比CO2高了兩倍多。
聖嬰年間台灣海峽北部、西菲律賓海和南海的N2O皆有較低的現象,推測是聖嬰期間海水湧升減弱所致。此外,台灣河川湖泊和SGD(Submarine Groundwater Discharge)的平均N2O濃度分別為32.32±43.26nM、9.72±13.16 nM。
Abstract
El Niño is now a focal point for global climate change research, but its influence on the Western Pacific is still uncertain. Taiwan Strait is an important pathway, which connects the South China Sea and the East China Sea, and is strongly influenced by the monsoon. Generally, in winter, the strong winter monsoon brings the cold and nutrient-rich Changjiang Diluted Water(CDW)southward. While during the El Niño event, because of the weakened south wind in northern Taiwan, more cold CDW moves southward, and hence the decreased seawater temperature in spring and fall. The trend is opposite in summer.
There is a high salinity signal in the seas outside of Hsin-Chu, suggesting sea water coming from the Kuroshio, which has circumvented the northeast tip of Taiwan. Meanwhile, there is a front which separates this Kuroshio water and CDW. During the El Niño, the front moves eastward, especially in summer.
The salinity east of the front decreases gradually from spring to winter water, the center of upwelling located at the eastern side of the front in spring, and at or near the front from summer to winter. Furthermore, The N/P ratio of the northern Taiwan Strait water became higher after the Three Gorges Dam (TGD) became operational.
The nitrous oxide (N2O) is a long-lived greenhouse gas. Unfortunately, in Taiwan, there are few data about N2O emission from rivers, lakes and coastal areas. This research also studies the N2O distribution in natural waters around Taiwan.
The average surface water concentration and sea to air flux in the Taiwan Strait(7.81±1.28nM;0.28±0.38μmol/m2/hr)is higher than in the South China Sea(SCS;7.55±2.45 nM;0.21±0.27μmol/m2/hr)and the West Philippine Sea(WPS;5.3±0.62nM;-0.20±0.25μmol/m2/hr), which displays a rare sink signal in the world oceans.
There is an N2O maximum observed around 1000m in the WPS, and another shollower one around 700m in the SCS, presumably because of the intenive upwelling and vertical mixing in the SCS basin.
There are some rather high N2O concentrations (N2O>30nM) in the SCS, observed near the continental slope. We assume that these are released from sediments on the continental slope. Although the sea-to-air flux of N2O is much lower than the flux of CO2, N2O emission in the SCS contributes more than two times the greenhouse effect than CO2 does.
Besides, The N2O concentration during El Niño is lower than usual, probably due to a smaller amount of the CDW. Finally, the average N2O concentrations of river and submarine groundwater discharge in Taiwan are about 32.3±43.3nM and 9.72±13.2 nM, respectively.
目次 Table of Contents
致謝----------------------------------------------------------------------------------------Ι
中文摘要--------------------------------------------------------------------------------Ⅱ
英文摘要--------------------------------------------------------------------------------Ⅳ
目錄--------------------------------------------------------------------------------------Ⅵ
圖目錄-----------------------------------------------------------------------------------IX
表目錄---------------------------------------------------------------------------------XIII
第一章、緒論-----------------------------------------------------------------------------1
第二章、研究材料與方法--------------------------------------------------------------5
2.1、研究材料--------------------------------------------------------------------------5
2.2、研究方法--------------------------------------------------------------------------7
第三章、長江沖淡水在台灣海峽之季節性消長及年際變化-------------------10
3.1、 春季航次之探討及比較--------------------------------------------------10
3.1.1、ORⅡ-1082---------------------------------------------------------------10
3.1.2 ORⅡ-1180及ORⅡ-1182--------------------------------------------- 12
3.1.3、ORⅡ-1268---------------------------------------------------------------14
3.1.4、ORⅡ-1349---------------------------------------------------------------16
3.1.5、春季航次之比較--------------------------------------------------------18
3.2、夏季航次之探討及比較----------------------------------------------------23
3.2.1、ORⅡ-806----------------------------------------------------------------23
3.2.2、ORⅡ-871----------------------------------------------------------------25
3.3.3、夏天航次之比較--------------------------------------------------------27
3.3、秋季航次之探討及比較-----------------------------------------------------31
3.3.1、ORⅡ-1139---------------------------------------------------------------31
3.3.2、ORⅡ-1379---------------------------------------------------------------33
3.3.3、ORⅡ-1034---------------------------------------------------------------34
3.3.4、ORⅡ-1312 --------------------------------------------------------------36
3.3.5、秋季航次之比較--------------------------------------------------------38
3.4、冬季航次之探討-------------------------------------------------------------43
3.5、正常年與聖嬰年間長江沖淡水對台灣海峽之影響-------------------46
3.5.1、正常年四季之變化-----------------------------------------------------46
3.5.2、聖嬰年四季之變化-----------------------------------------------------47
3.5.3、台灣海峽北部鋒面之探討--------------------------------------------47
3.6、三峽大壩對長江水輸入台灣海峽的影響--------------------------------53
第四章、台灣周遭水域的N2O分佈-海水----------------------------------------55
4.1、N2O的研究材料--------------------------------------------------------------57
4.2、N2O的研究方法--------------------------------------------------------------64
4.3、台灣海峽海水之N2O分佈探討-------------------------------------------67
4.3.1、台灣海峽北部-----------------------------------------------------------67
4.3.2、台灣海峽南部-----------------------------------------------------------75
4.3.3、台灣海峽南北部之N2O比較-----------------------------------------82
4.3.4、核三、台西及金門附近海域------------------------------------------85
4.4、西菲律賓海與南海之N2O分佈-------------------------------------------89
4.4.1、西菲律賓海--------------------------------------------------------------91
4.4.2、南海-----------------------------------------------------------------------97
4.4.3、西菲律賓海和南海N2O分佈之比較------------------------------105
4.5、小結--------------------------------------------------------------------------109
第五章、台灣周遭水域的N2O分佈-淡水--------------------------------------111
5.1、台灣河川與湖泊-----------------------------------------------------------111
5.2、台灣地區SGD-------------------------------------------------------------115
5.3、亞洲地區河川--------------------------------------------------------------121
結論-------------------------------------------------------------------------------------124
參考文獻-------------------------------------------------------------------------------126
附錄A、台灣河川湖泊N2O濃度及通量------------------------------------------137
附錄B、台灣地區SGD之N2O濃度-----------------------------------------------140
附錄C、中國、香港等地N2O濃度與通量-----------------------------------------140
附錄D、東南亞地區N2O濃度與通量---------------------------------------------144
附圖1、ORⅡ-1082剖面圖----------------------------------------------------------147
附圖2、ORⅡ-1180剖面圖---------------------------------------------------------149
附圖3、ORⅡ-1182剖面圖----------------------------------------------------------151
附圖4、ORII-1268剖面圖-----------------------------------------------------------153
附圖5、ORⅡ- 1349剖面圖---------------------------------------------------------155
附圖6、ORII- 806剖面圖------------------------------------------------------------157
附圖7、ORII- 871剖面圖------------------------------------------------------------160
附圖8、ORII-1139剖面圖-----------------------------------------------------------163
附圖9、ORII-1379剖面圖-----------------------------------------------------------165
附圖10、ORII-1034剖面圖----------------------------------------------------------166
附圖11、ORII-1312剖面圖----------------------------------------------------------169
附圖12、ORΙ- 631剖面圖-----------------------------------------------------------171
參考文獻 References
王樹倫,1997。西北太平洋邊緣海二氧化碳之研究。國立中山大學海洋地質及化學所博士論文,p. 226。
林柏逸,2004。西北太平洋地區颱風活動特徵在氣候變異年之對比研究。中國文化大學地學研究所碩士論文,p. 33。
范光龍、林國龍、張毓堯,2004。台灣聖嬰現象與降雨量的關係。2004年海洋科學成果發表會摘要論文集。
侯偉萍,2004。南海週遭海域二氧化碳變化之研究。國立中山大學海洋地質及化學研究所碩士論文,p. 94。
梁又德、詹志丞、唐存勇,2000。南海之氣候平均風場及上層海洋熱含量。台灣海峽學刊,38,91-114。
許武成、王文、馬勁松、楊霞,2004。1997~1998年厄爾尼諾事件的特性、成因及對氣候的影響。東海海洋,22 (3),1-8。
許群、吳朝榮,2005。台灣海峽海流模式研究。2005年臺灣海洋年海洋資訊應用研討會論文集。
曾筱君,2005。南海週遭海域二氧化碳變化之研究。國立中山大學海洋地質及化學研究所碩士論文,p. 52;p. 85;p.101;p. 127。
張恩仁、張經,2003。三峽水庫對長江N、P營養鹽截留效應的模式
分析。湖泊科學,15,41-48。
潘家緯、袁業立、鄭全安,1997。用Geosat高度計數據觀測黑潮系的低頻變化Ⅱ.季節及年紀變化分析。海洋學報,19,51-62。
趙震慶,1997。台灣中部及南部水稻田、旱田、溼地、森林及坡地果園土壤氧化亞氮之釋放及其影響因子。台灣地區大氣環境變遷(呂世宗、柳中明、楊盛行編),pp.173-194。國立台灣大學農業化學系和國立台灣大學全球變遷中心,台北、台灣。
賴朝明,1997。台灣北部水稻田、旱田、溼地、林地和垃圾掩埋場氧化亞氮之釋放及其影響因子。台灣地區大氣環境變遷(呂世宗、柳中明、楊盛行編),pp. 383-400。國立台灣大學農業化學系和國立台灣大學全球變遷中心,台北,台灣。
賴朝明,1998。台灣北部旱田、森林土壤及垃圾掩埋場氧化亞氮之釋放及其影響因子。台灣地區大氣環境變遷(三),pp. 105-117。國立台灣大學農業化學系和國立台灣大學全球變遷中心,台北,台灣。
賴朝明、錢元皓、楊盛行,2003。水稻田、旱田及溼地氧化亞氮排放量測及減量對策。溫室氣體通量測定及減量對策(IV),pp. 73-88。國立台灣大學全球變遷中心,國立台灣大學農業化學系和國立屏東科技大學生物科技研究所,台北,台灣。
Abril, G., Riou, S.A., Etcheber, H., Frankignoull, M., de Wit, R. and Middelburg, J.J., 2000. Transient, Tidal Time-scale, Nitrogen Transformations in an Estuarine Turbidity Maximum-Fluid Mud System (The Gironde, South-west France). Estuarine, Coastal and Shelf Science, 50, 703–715.
Albritton, D., Derwent, R., Isaksen, I. and Wuebbles, L.M., 1996. Radiative forcing of climate change, In Houghton J. T. et al. (eds.), Climate change 1995: the science of climate change, pp. 118-131. New York: Cambridge University Press.
Bange, H.W., Rapsomanikis, S. and Andreae, M.O., 1996. The Aegean Sea as a source of atmospheric nitrous oxide and methane. Marine Chemistry, 53, 41-49.
Bange, H.W., 2006. Nitrous oxide and methane in European costal waters. Estuarine Coastal and Shelf Science. 70, 361-374.
Battle, M., Bender, M., Sowers, T., Tans, P.P., Butler, J.H., Elkins, J.W., Ellis, J.T., Conway, T., Zhang, N., Lang, P. and Clarket, A.D., 1996. Atmospheric gas concentrations over the past century measured in air from firn at the South Pole. Nature, 383, 231-235.
Bouwman, A.F., van der Hoek, K.W. and Olivier, J.G., 1995. Uncertainties in the global source distribution of nitrous oxide. Journal of Geophysical Research, 100, 2785-2800.
Butler, J.H., Elkins, J.W. and Tompson, T.M., 1989. Tropospheric and dissolved N2O of the West Pacific and East Indian Oceans during the El Niño southern oscillation event of 1987. Journal of Geophysical Research, 94, 14865-14877.
Capone, D.G., 1991. Aspects of the marine nitrogen cycle with relevance to the dynamics of nitrous and nitric oxide. In Rogers J.E. and Whitman W.E. (Eds), Microbial Production and Consumption of greenhouse gases, pp. 255-275. Washington, D. C.: Am. Soc. Of Microbiol.
Chang, T.C., Luo, Y.C. and Yang, S.S., 1999. Determination of major greenhouse gases by gas-type FTIR spectroscopy. In Flux and Mitigation of Greenhouse Gases, pp.59-73. Taipei, Taiwan: Department of Agricultural Chemistry and Global Change Research Center of National Taiwan University.
Chao, S.Y., Shwa, P.T. and Wu, S.Y., 1996. El Niño modulation of the South China Sea circulation. Progress in oceanography, 38, 51-93.
Chen, C.T.A., and Wang, S.L., 1999. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. Journal of Geophysical Research, 104, 20675-20686.
Chen, C.T.A., 2000. The Three Gorges Dam: Reducing the Upwelling and thus Productivity in the East China Sea. Geophysical Research Letters, 27(3), 381-383.
Chen, C.T.A., 2002. The impact of dams on fisheries:case of the Three Gorges Dam. In Steffen, W., Jager, J., Carson, D.J. and Bradshaw, C. (Eds), Challenge of a Changing Earth, pp. 97-99. Berlin: Springer.
Chen, C.T.A., 2003. Rare northward flow in the Taiwan Strait in winter: a note. Continental Shelf Research, 23, 387-391.
Chen, C., Zhu, J., Beardsley, R.C. and Franks, P.J.S., 2003. Physical-biological sources for dense algal blooms near the Changjiang River. Geophysical Research Letters, 30 (10), 1515, doi:10.1029/2002GL016391.
Chen, C.T.A., Wang , S.L., Chou, W.C. and Sheu, D.D., 2006. Carbonate chemistry and projected future changes in pH and CaCO3 saturation state of the South China Sea. Marine Chemistry, 101, 277–305.
Chen, C.T.A., and Wang, S.L., 2006. A salinity front in the southern East China Sea separating the Chinese coastal and Taiwan Strait waters from Kuroshio waters, Continental Shelf Research, 26, 1636-1653.
Chen, C.TA. and Sheu, D.D., 2006. Does the Taiwan Strait Warm Current originate in t he Taiwan Strait in wintertime?. Journal of Geophysical Research, 11, C04005, doi: 10.1029/2005JC003281.
Chou W.C., Sheu, D.D.D. and Chen, C.T.A., 2005. Seasonal variability of carbon chemistry at the SEATS time-series site, northern South China Sea between 2002 and 2003. TAO, 16 (2), 445-465.
Chuang, W.S., 1986. A note on the driving mechanisms of current in the Taiwan Strait. Journal of the Oceanography Society of Japan, 42, 355-361.
Codispoti, L.A., Yoshinari, T., and Devol, A.H., 2005. Suboxic respiration in the oceanic water column. In Del Giorgio, P.A. and Williams, P.J.(Eds), Respiration in aquatic ecosystems, pp. 225–247, Oxford: Oxford University Press.
Cohen, Y. and Gordon, L.I., 1978. Nitrous oxide in the oxygen minimum of the eastern tropical North Pacific: Evidence for its consumption during denitrification and possible mechanisms for its production. Deep-Sea Research, 25(6), 509–524.
Cohen, Y. and Gordon, L.I., 1979. Nitrous oxide production in the ocean. Journal of Geophysical Research, 84, 347-354.
Cornejo M., Farías, L. and Paulmier, A., 2006. Temporal variability in N2O water content and its air–sea exchange in an upwelling area off central Chile (36°S). Marine Chemistry, 101, 85–94.
de Sousa, S.N., Sardesai, S.D., Sarma, V.V.S.S., and Shirodkar, P.V., 1996. Seasonal variability in oxygen and nutrients in the Arabian Sea. Current Science, 71, 847-851.
Devol, A. H., 1978. Bacterial oxygen uptake kinetics as related to biological processes in oxygen deficient zones of oceans. Deep-Sea Research, 25, 137-146.
Dong, L. F., Nedwell, D.B., Underwood, G.J.C., Thornton, D.C.O. and Rusmana, I., 2002. Nitrous oxide formation in the Colne estuary, England: the central role of nitrite. Applied and Environmental Microbiology, 68, 1240-1249.
Egan, K.B., 1989. Tropospheric and dissolved N2O of the West Pacific and East Indian Oceans during the El Niño Southern Oscillation event of 1987. Journal of Geophysical Research, 94(D12), 14865-14877.
Elkins, J.W., Wofsy, S.C., McElroy, M.B., Kolb, C.E., and Kaplan, W.A., 1978. Aquatic sources and sinks for nitrous oxide. Nature, 275(5681), 602–606.
Feely, R.A., Boutin, J., Cosca, C.E., Dandonneau, Y., Etcheto, J., Inone, .H.Y., Ishii, M., Quere, C.L., Mackey, D.J., Mcphaden, M., Metzi, N., Poisson, A. and Wanninkhof, R., 2002. Seasonal and interannal variability of CO2 in the equatorial Pacific. Deep-Sea ResearchⅡ, 49, 2443-2469.
Gong, G.C., Chang, J., Chiang, K.P., Hsiung, T. M., Hung, C.C., Duang, S.W. and Codispodi, L., 2006. Reduction of primary production and changing of nutrient ratio in the East China Sea: Effect of the Three Gorges Dam?. Geophysical Research Letters, 33, L07610, doi:10.1029/2006GL025800.
Goreau, T.J., Kaplan, W.A., Wofsy, S.C., McElory, M. B, Valois, F.W. and Watson, S.W., 1984. Production of NO2- and N2O by nitrifying bacteria at reduced concentration of oxygen. Applied and Environmental Microbiology, 40, 213-223.
Hashimoto, S., Gojo, K., Hikota, S., Sendai, N. and Otsuki, A., 1999. Nitrous oxide emissions from coastal waters in Tokyo Bay. Marine Environmental Research, 47, 213-223.
Helly, J. and Levin, L., 2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Research I, 51, 1159–1168.
Horrigan, S.G., Carlucci, A.F. and Williams, P.M., 1981. Light inhibition of nitrification in sea-surface films, Journal of Marine Research, 39, 557-565.
Houghton, J. T. Meria Filho, L. A., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (Eds.), Climate change 1995: the science of climate change, pp.572. Cambridge: Cambridge University Press.
Inibushi, K and Umebayashi, M., 1992. Current Overview of Global Environmental Issues. Report of the environmental science, 16, 77-87.
Intergovernmental Panel on Climate Change (IPCC), 2001. Technical
summary of the working group I report, C.1, pp.38-43; pp. 239-287.
Intergovernmental Panel on Climate Change (IPCC), 2007. Summary for Policymakers, pp. 3.
Intergovernmental Panel on Climate Change (IPCC), 2007. Working Group I Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report, TS-15.
Jan, S., Chen, C.S. and Wang, J., 2002. Transition of tidal waves from the East to South China Seas over the Taiwan Strait: Influence of the abrupt step in the topography. Journal of Oceanography, 58, 837-850.
Johnson, K.M., Hughes, J.E., Donaghay, P.L. and Sieburth, J.M., 1990. Bottle-calibration static head space method for the determination of Methane dissolved in seawater. Analytical Chemistry, 62, 2408-2412.
Joye, S.B. and Hollibaugh, J.T., 1995. Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments, Science, 270, 623-625.
Jøgensen K.S., Jensen, H.B. and Sørensen, J. 1984. Nitrous oxide production from nitrification and denitrification in marine sediment at loe oxygen concentration. Can. J. Microbiol, 30, 1073-1078.
Kamykowski, D.Z., Zentara, S.J., 1990. Hypoxia in the world ocean as recorded in the historical data set. Deep-Sea Research, 37, 1861–1874.
Khail, M.A.K. and Rasmussen, R.A., 1990. Constraints on the global sources of methane and an analysis of recent budgets. Tellus B, 42, 229-236.
Khail, M.A.K. and Rasmussen, R.A., 1992. The global sources of Nitrous Oxide. Journal of Geophysical Research, 97, 14651-14660.
Kroeze, C. and Seitzinger, S.P., 1998. The impact of land on N2O emissions from watersheds draining into the northeastern Atlantic Ocean and European Seas. Environmental Pollution, 102, 149-158.
Kroeze, C., Mosier, A. and Bouwman, L., 1999. Closing the global N2O budget: A retrospective analysis 1500-1994. Global Biogeochemical Cycles, 13, 1-8.
Kuo, N.J. and Ho, C.R., 2004. ENSO effect on the sea surface wind and sea surface temperature in the Taiwan Strait, Geophysical Research Letters, 31, L13309, doi:10.1029/2004GL020303.
LaMontagne, M.G., Duran, R. and Valiela, I., 2003. Nitrous oxide sourced and sinks in coastal aquifers and coupled estuarine receiving waters. The Science of the Total Environment, 309, 139-149.
Lammer, S and Suess, E., 1994. An improved head-space analysis method for methane in seawater. Marine Chemistry, 47, 115-125.
Law, C.S. and Owen, N.J.P., 1990. Significant flux of atmospheric nitrous oxide from the northwest Indian Ocean. Nature, 346, 826– 828.
Law, C.S., Rees, A.P., Owen, N.J.P., 1991. Temporal variability of denitrification in estuarine sediments, Estuarine, Coastal and Shelf Science, 33, 37-56.
Lin, S. F., Tang, T.Y., Jan, S. and Chen, C. J., 2005. Taiwan Strait current in winter. Continental Shelf Research, 25, 1023–1042.
Liu, C.T. and Liu, R.J., 1988. The deep current in the Bashi Channel. Acta Oceanographica Taiwanica, 20, 107-116.
Liu, S.M., Zhang, J., Chen, H.T., Wu, Y., Xiong, H. and Zhang, Z.F., 2003. Nutrients in the Changjiang and its tributaries, Biogeochemistry, 62, 1-18, 10.1023/A:1021162214304.
Machida, T., Nakazawa, T., Tanaka, M., Fufii, Y., Aoki, S. and. Watanabe, O., 1995. Atmospheric methane and nitrous oxide concentrations during the last 250 years. Geophysical Research Letters, 22, 2921-2924.
Mantoura, R.F.C., Law, C.S., Owen, N. P. J., Burkill, H., Woodward, E.M.S., Howland, R. J. M. and Llewellyn, C. A., 1993. Nitrogen biogeochemical cycling in the northwestern Indian Ocean. Deep-Sea Research II, 40, 651-671.
Mcphaden, M.J., 1999. Genesis and evolution of the 1997-98 El Niño. Science, 283, 950-954.
Murlidharan, P.M. and Kumar, S.P., 1996. Arabian Sea upwelling-a comparison between coastal and open ocean regions. Current Science, 71, 842-846.
National Oceanic & Atmospheric Administration(NOAA): http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
Najjar, R.G., 1992. Marine biogeochemistry. In Trenberth, K. E. (Ed), Climate System Modeling, pp. 241-280. New York: Cambridge University Press.
Naqvi, S.W.A., Yoshinari, T., Jayakumar, D.A., Altabet, M. A., Narvekar, P.V., Devol, A.H., Brandes, J. A.and Codispoti, L.A., 1998, Budgetary and biogeochemical implication of N2O isotope signature in the Arabian Sea, Nature, 394, 462-464.
Naqvi, S.W.A., Jayakumar, D.A., Narvekar, P.V., Naik, H., Sarma, V.V.S.S., D’Souza, W., Joseph, S., and George, M.D., 2000. Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf, Nature, 408(6810), 346–349
Nevison, C.D., Weiss, R.F. and Erickson, D.J., 1995. Global oceanic nitrous oxide emissions. Journal of Geophysical Research, 100, 15809-15820.
Nevison, C.D. and Holland, E.A., 1997. A reexamination of the impact of anthropogenically fixed nitrogen on atmospheric N2O and stratospheric O3 layer. Journal of Geophysical Research, 102, 25519-25536.
Nevison, C., Butler, J.H. and Elkins, J.W., 2003. Global distribution of N2O and the ΔN2O-AOU yield in the subsurface ocean. Global Biogeochemical Cycles, doi:10.1029/2003GB002068.
Nitani, H., 1972. Beginning of the Kuroshio, In Stommel, H. and Yoshida, K. (Eds), Kuroshio, pp.353-369. University of Tokyo Press,
Ostrom, N.E., Russ, M.E., Popp, B., Rust, T. M. and Karl, D.M., 2000. Mechanisms of nitrous oxide production in the subtropical North Pacific based on determinations of the isotopic abundances of nitrous oxide and di-oxygen. Global Change Science, 2, 281–290.
Patra, P.K., Lal, S., Venkataramani, S., de Sousa, S.N., Sarma, V.V.S.S. and Sardesai, S., 1999. Seasonal and spatial variability in N2O distribution in the Arabian Sea. Deep-Sea Research I, 46, 529-543.
Rehder, G. and Suess, E., 2001. Methane and pCO2 in the Kuroshio and the South China Sea during maximum summer surface temperatures. Marine Chemistry, 75, 89-108.
Popp, B.N., Westley, M.B., Toyoda, S., Miwa, T., Dore, J.E., Yoshida, N., Rust, T.M., Sansone, F.J., Russ, M.E., Ostrom, N.E., and Ostrom, P.H.: Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air flux of N2O in the oligotrophic subtropical North Pacific gyre. Global Biogeochemical Cycles, 16(4), doi:10.1029/2001GB001806.
Prather, M., Ehhalt, D., Dentener, F., Derwent, R., Dlugokencky, E., Holland, E., Isaksen, I., Katima, J., Kirchhoff, V., Matson, P., Midgley, P., and Wang, M., 2001. Atmospheric chemistry and greenhouse gases, In Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., Van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (Eds). Climate Change 2001: The Scientific Basis, pp. 239–287. Cambridge, UK: Cambridge University Press.
Punshon S. and Moore R.M., 2004. Nitrous oxide production and consumption in a eutrophic coastal embayment. Marine Chemistry, 91, 37– 51.
Seitzinger, S.P., 1988. Denitrification in freshwater amd costal marine ecosystems: ecological and geochemical significance. Limnology and Oceanography, 33, 702-724.
Seitzinger, S.P. and Kroeze, C., 1998. Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Global Biogeochemical Cycles, 12, 1, 93-113.

Seitzinger, S.P., Kroeze, C., and Styles, R.V., 2000. Global distribution of N2O emissions from aquatic systems: Natural emissions and anthropogenic effects. Chemosphere: Global Science Change, 2, 267–279.
Suntharalingam, P., Sarmiento, J.L., 2000. factors governing the oceanic nitrous oxide distribution: simulations with an ocean general circulation model. Global Biogeochemical Cycles, 14, 429-454.
Usui, T., Koike, I. and Ogura, N., 1998. Vertical profiles of nitrous oxide and dissolved oxygen in marine sediment. Marine Chemistry, 59, 253-270.
Walter, S., Bange, H.W. and Wallace, D.W.R., 2004. Nitrous oxide in the surface layer of the tropical North Atlantic Ocean along a west to east transect. Geophysical Research Letters, 31, L23S07, doi:10.1029/2004GL019937.
Walter, S., Breitenbach, H., Bange, H.W., Nausch, G. and Wallace, W.R., 2006. Nitrous oxide water column distribution during the transition from anoxic to oxic conditions in the Baltic Sea. Biogeosciences Discussions, 3, 729-764.
Wang, W.C., Molnar, G., Ko, M.K.W., Goldenberg, S. and Sze, N.D., 1990. Atmospheric trace gases and global climate: a seasonal model study. Tellus, 42B, 149-16.
Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97, 7373-7382.
Ward, B.B., 1986. Nitrification in marine environments. In Prosser, J. I. (Ed), Nitrification, pp. 157-84. Washington, D. C: IRL Press.
Ward, B.B., Glover, H.E. and Lipschultz, F.,1989. Chemoautotrophic activity of nitrification in the oxygen minmum zone off Peru. Deep-Sea Research, 36, 1031-1051.
Webster, P.J. and palmer, T.N., 1997. The past and the future of El Niño. Nature, 390, 562-564.
Wei, H., He, Y., Li, Q., Liu, Z. and Wang, H., 2006. Summer hypoxia adjacent to the Changjiang Estuary. Journal of Marine Systems, doi:10.1016/j.jmarsys.2006.04.014.
Weiss, R.F. and Price, B.A., 1980. Nitrous oxide solubility in water and seawater. Marine Chemistry, 8, 347-359.
Weiss, R.F., 1981. The temporal and spatial distribution of tropospheric nitrous oxide. Journal of Geophysical Research, 86, 7185-7195.
World Data Center for Greenhouse Gases(WDCGG): http://gaw.kishou.go.jp/wdcgg.html
World Meteorological Organization(WMO): Scientific assessment of ozone depletion: 2002, pp. 498, Geneva, 2003.
Yamagishi, H., Yoshida, N., Toyoda, S., Popp, B.N., Westley, M.B., and Watanabe, S., 2005. Contributions of denitrification and mixing on the distribution of nitrous oxide in the North Pacific. Geophysical Research Letters, 32(4), LO4603, doi:10.1029/2004GLO21458.
Ye, L. F., 1997. South China Sea circulation, kuroshio intrusion and the through flow from the pacific to Indian ocean. Nanhai Yanjiu Yu Kaifa, 3, 35-39.
Yoshida, N., Morimoto, H., Hirano, M., Koike, I., Matsuo, S., Wada, E., Saino, T., and Hattori A., 1989. A Nitrification rates and 15N abundances of N2O and NO−3 in the western North Pacific. Nature, 342, 895–897.
Yoshinari, T., 1976. Nitrous oxide in the sea. Marine Chemistry, 4, 189-202.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code