Responsive image
博碩士論文 etd-0910107-183149 詳細資訊
Title page for etd-0910107-183149
論文名稱
Title
低功率微型加熱平板與白金薄膜溫度感測器之研究
A Study of Low Power Microhotplate and Platinum Thin Film Temperature Sensor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-20
繳交日期
Date of Submission
2007-09-10
關鍵字
Keywords
氫氧化四甲胺、白金薄膜溫度感測器、微型加熱平板
Micro-hot-plate, Platinum thin film temperature sensor, TMAH
統計
Statistics
本論文已被瀏覽 5635 次,被下載 0
The thesis/dissertation has been browsed 5635 times, has been downloaded 0 times.
中文摘要
微機電系統中常需進行即時溫度補償或控制以獲得較線性與較精確之輸出信號,例如智慧型生活空間感測系統、微流體晶片系統與生醫感測系統等皆有此需求。因此非常有必要進行具高度熱絕緣性及低消耗功率之微型溫度感測或加熱元件之研發,以使整體系統符合可攜帶式之目標。

本論文致力於研究一種低功率微型加熱平板與高靈敏度溫度感測元件之設計與製作。其中之溫度感測與加熱薄膜是由電子束蒸鍍機沉積之白金薄膜所組成,並利用掀離(Lift-off)技術完成白金圖形之製版;另外,研究中使用氫氧化四甲胺異向性矽蝕刻技術以形成懸浮式的微型加熱平板,進而提高元件的絕熱性且可避免熱功率經由矽基板傳導而損耗。本論文所設計與製作的白金薄膜溫度感測元件之感溫線性度高達99.9 %以上,且其溫度靈敏度(TCR)達1914 ppm/℃;另一方面,所完成之微型加熱平板升溫至300 ℃時之操作功率僅為14 mW,且其升溫效率高達18.3 ℃/mW。
Abstract
Many applications in microelectromechanical systems such as smart living space sensing system, microchannel system on chip and biomedical sensing system usually require instantaneously compensating or controlling the temperature of chip to acquire more linear and accurate output signal. So it is necessary to develop a micro temperature sensor or micro-hot-plate which has highly thermal isolation and low power characteristics.

This thesis aims to design and fabricate a low power micro-hot-plate and a high-sensitivity temperature sensor for portable applications. This dissertation utilized a high power E-beam evaporator to deposit the platinum thin film as the material of temperature sensing and heating. The Pt layer is patterned using the lift-off technique. In addition, the micro-hot-plate can be released from the silicon substrate as a floating thin-plate using TMAH-based anisotropic etching technology. The floating structure can improve the thermal isolation and reduce the power loss through the silicon substrate. In this study, the higher temperature sensitivity (1914 ppm/℃) and optimized sensing linearity ( > 99.9 %) of the platinum-based temperature sensor is demonstrated. On the other hand, the heating power of the floating micro-hot-plate developed in this research is only 14 mW when it be heated to 300 ℃ and the power efficiency is very high (18.3 ℃/mW).
目次 Table of Contents
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
1-3 實驗方法與論文架構 5
第二章 溫度感測器與微型加熱平板之原理介紹 7
2-1 溫度表示與量測方式 7
2-2 傳統溫度感測器之原理 10
2-2-1 熱電偶 10
2-2-2 熱敏電阻 13
2-2-3 電阻式溫度感測器 14
2-2-4 熱二極體與熱電晶體 17
2-3 白金薄膜溫度感測器之研究 21
2-3-1 感測原理 21
2-3-2 白金薄膜材料特性 22
2-3-3 白金薄膜圖形製版技術 24
2-4 微型加熱平板之研究 26
2-4-1 加熱原理 26
2-4-2 懸浮結構之探討 27
第三章 元件設計與製作流程 33
3-1 白金薄膜溫度感測器與微型加熱平板之元件設計 33
3-2 白金薄膜溫度感測器與微型加熱平板之元件製作 37
3-2-1 製作流程 37
3-2-2 製作方法與製程參數 38
3-3 實驗設備規格 48
第四章 結果與討論 55
4-1 實驗結果與討論 55
4-1-1 白金薄膜之掀離 55
4-1-2 矽基板之異向性蝕刻 57
4-2 元件特性與分析 60
4-2-1 白金薄膜溫度感測器特性量測與分析 60
4-2-2 微型加熱平板特性量測與分析 65
4-2-3 熱絕緣性分析 68
第五章 結論與建議 70
5-1 結論 70
5-2 建議 72
參考文獻 74
參考文獻 References
[1] J. W. Gardner, V. K. Varadan, O. O. Awadelkarim, “Microsensors MEMS and Smart Devices,” John Wiley & Sons LTD, 2001.
[2] T. R. Hsu, “MEMS and Microsystems : Design and Manufacture,” McGraw-Hill Pub., 2002.
[3] 吳朗,“感測與轉換”,全欣資訊圖書出版,1992年。
[4] 陳瑞和,“感測器”,全華圖書出版,1993年。
[5] J. J. Carr, “Sensors and Circuits : Sensors, Transducers, and Supporting Circuits for Electronic Instrumentation, Measurement, and Control,” PTR Prentice Hall Pub., 1997.
[6] J. Fraden, “AIP Handbook of Modern Sensors,” American Institute of Physics Pub., 1993.
[7] P. Ciureanu, S. M. Bristol, “Thin Film Resistive Sensors,” Institute of Physics Pub., 1992.
[8] 鄭敦仁,“熱阻式薄膜溫度感測器”,電子月刊,6月號,1996年。
[9] W. A. Clayton, “Thin film platinum for appliance temperature control,” IEEE Transaction on Industry Application, vol. 24, no. 2, 1988.
[10] 呂璞石,黃振賢,“金屬材料”,文京圖書出版,增訂11版,1990年。
[11] 劉廣定,“王水知多少”,科學月刊,第二十九卷,第四期,pp. 317-319,1998年。
[12] D. Barrettino, M. Graf, S. Taschini, S. Hafizovic, C. Hagleitner, A. Hierlemann, “CMOS Monolithic Metal–Oxide Gas Sensor Microsystems,” IEEE Sensors Journal, vol. 6, no. 2, pp. 276-286, 2006.
[13] M. Y. Afridi, J. S. Suehle, M. E. Zaghloul, “A monolithic CMOS microhotplate-based gas sensor system,” IEEE Sensors Journal, vol. 2, no. 6, pp. 644-655, 2002.
[14] N. H. Tea, V. Milanovi´c, C. A. Zincke, “Hybrid postprocessing etching for CMOS-compatible MEMS,” Journal of Microelectro- -mechanical systems, vol. 6, no. 4, pp. 363-372, 1997.
[15] Y. Mo, Y. Okawa, K. Inoue, K. Natukawa, “Low-voltage and low-power optimization of micro-heater and its on-chip drive circuitry for gas sensor array,” Sensors and Actuators A, vol. 100, no. 1, pp. 94–101, 2002.
[16] S. Semancik, R. E. Cavicchi, M. C. Wheeler, J. E. Tiffany, G. E. Poirier, R. M. Walton, J. S. Suehle, B. Panchapakesan, D. L. DeVoe, “Microhotplate platforms for chemical sensor research”, Sensors and Actuators B, vol. 77, pp. 579-591, 2001.
[17] J. L. González-Vidal, A. Reyes-Barranca, W. C. Arriaga, “Technological processes for Micro-Heater and Micro-Hot-Plate in the implementation of a MEM gas sensor,” 2nd International Conference on Electrical and Electronics Engineering (ICEEE) and XI Conference on Electrical Engineering (CIE 2005)Mexico City, pp. 7-9, 2005.
[18] C.W. Meyer, D.C. Meier, C.B. Montgomery, S. Semancik, “Temperature measurements of microhotplates using fluorescence thermometry,” Sensors and Actuators A, vol. 127, no. 2, pp. 235-240, 2006.
[19] K. D. Benkstein, S. Semancik, “ Mesoporous nanoparticle TiO2 thin films for conductometric gas sensing on microhotplate platforms,” Sensors and Actuators B, vol. 113, no. 1, pp. 445-453, 2006. [20] L. Zhua, D. Meier, Z. Boger, C. Montgomery, S. Semancik, D. L. DeVoe, “Integrated microfluidic gas sensor for detection of volatile organic compounds in water,” Sensors and Actuators B, vol. 121, no. 2, pp. 679-688, 2007.
[21] F. T. Zhang, Z. A. Tang, J. Yu, R. C. Jin, “Thermal analysis of a constant temperature pirani gauge based on Micro-hotplate,” Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 1072 – 1075, 2006.
[22] J. T. L. Thong, W. K. Choi, C. W. Chong, “TMAH etching of silicon and the interaction of etching parameters, ” Sensors and Actuators A, vol.63, pp. 243-249, 1997.
[23] K. Biswas, S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Micro- -electronics Journal, vol. 37, no. 6, pp. 519-525, 2006.
[24] C. R. Yang, P. Y. Chen, C. H. Yang, Y. C. Chiou, R. T. Lee, “Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions,” Sensors and Actuators A, vol. 119, no. 1, pp. 271-281, 2005.
[25] K. Sakaino, S. Adachi, “Study of Si (100) surfaces etched in TMAH solution,” Sensors and Actuators A, vol. 88, pp. 71 -78, 2001.
[26] J. J. Tsaur, C. H. Du, C. Lee, “Investigation of TMAH for front-side bulk micromachining process from manufacturing aspect,” Sensors and Actuators A, vol. 92, pp. 375-383, 2001.
[27] P. H. Chen, H. Y. Peng, C. M. Hsieh, M. K. Chyu, “The characteristic behavior of TMAH water solution for anisotropic etching on both Silicon substrate and SiO2 layer,” Sensors and Actuators A, vol. 93, pp. 132-137, 2001.
[28] O. Tabata, R. Asahi, H. Funabashi, K. Shimaoka, S. Sugiyama, “Anisotropic etching of silicon in TMAH solutions, ” Sensors and Actuators A, vol. 34, pp. 51–57, 1992.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.201.131.213
論文開放下載的時間是 校外不公開

Your IP address is 44.201.131.213
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code