Responsive image
博碩士論文 etd-0910108-125647 詳細資訊
Title page for etd-0910108-125647
論文名稱
Title
研究電漿清潔製程對金、鋁與鉑接點之機電特性影響
A Study of the Influence of Plasma Cleaning Process on Mechanical and Electrical Characteristics of Gold, Aluminum and Platinum Pads
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-18
繳交日期
Date of Submission
2008-09-10
關鍵字
Keywords
銲線接合、拉力值、金/鋁/鉑墊、電漿清潔
Pull Strength, Wire Bonding, Au/Al/Pt pads, Plasma Cleaning
統計
Statistics
本論文已被瀏覽 5679 次,被下載 10
The thesis/dissertation has been browsed 5679 times, has been downloaded 10 times.
中文摘要
為了改善IC與MEMS晶片封裝製程中的銲線接合能力、表面附著力,與爆玉米花效應抵抗力,本論文分別利用氧電漿與氦電漿以修飾與清潔金屬墊層之表面。其中電漿清潔時間、金屬墊材料及導線銲接時間、銲接溫度與功率對銲線拉力之影響將於文中有深入的探討。
本論文使用商用超音波銲線機(SPB-U668),將兩種銲線材料(直徑為32 μm的鋁線與直徑為25 μm的金線)分別銲接在鋁、金以及鉑等三種IC與MEMS中常見的金屬墊表面;並藉由一精確拉力測試系統(Dage SERIES-4000)來量測銲線與微接點的垂直拉力值。
經過數百次的測試結果,本研究可歸納出下列三個結論:(I)金墊不論是否有電漿清潔之製程,其銲線拉力值都高於鋁墊及鉑墊,且金墊在經過180秒的氦電漿處理後,其銲線拉力值可達到最大值(12.286 g);(II)在相同的電漿處理時間下,金墊在經過氦電漿清潔處理後之銲線拉力值將明顯比氧電漿處理為高;然而,此結論並不適用於鋁墊及鉑墊;(III)本文所研究的最佳化銲接製程參數分別為:金墊0.07秒 / 2.1 W、鋁墊0.05秒 / 0.6 W及鉑墊0.03秒 / 2.7 W。
Abstract
To improve the wire bondability, interfacial adhesion and popcorn cracking resistance in the packaging processing of IC and MEMS chips, this thesis utilized oxygen and helium plasmas to modify and clean the surface of metal pads. The influences of the plasma cleaning time, metal pad materials and wire bonding time/temperature/power on the strength of wire bonding were investigated.
Two different wire materials (Al wire with 32 μm in diameter and Au wire with 25 μm in diameter) were bonded on the surface of Al, Au and Pt metal pads using a commercial ultrasonic wire bonder (SPB-U688), respectively. The pull strength detection of the implemented micro joints is characterized by an accurate pull strength testing system (Dage SERIES-4000).
Based on hundred measurement results, this research has three conclusions described as follows. (I) The pull strength of Au pad is higher than that of Al and Pt pads no matter with the plasma cleaning process or not. The maximum pull strength (12.286 g) can be achieved as the surface of Au pad was modified by the helium plasma for 180 seconds. (II) Helium plasma cleaned wafer can obtain larger improvement of pull strength than that of the oxygen plasma under the same plasma time. However, this result can not be concluded in Al and Pt pads. (III) The optimized wire bonding time/power of the Au, Al and Pt pads are 0.07 s/2.1, 0.05 s/0.6 W and 0.03 s/2.7 W, respectively.
目次 Table of Contents
中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 4
1-3 論文架構 5
第二章 構裝技術介紹 6
2-1 捲帶自動接合(TAB)技術 7
2-2 覆晶(Flip Chip)技術 8
2-3 銲線接合(Wire Bonding)技術 8
第三章 金屬墊設計與製作流程 12
3-1 金屬墊設計與製程參數 12
3-2 銲線接合製程參數 17
3-3 製程設備規格 19
第四章 實驗結果與討論 30
4-1 基板溫度對金墊微接點之拉力值影響 31
4-2 電漿清潔對金屬墊微接點之拉力值影響 37
 4-2-1 電漿對金墊微接點之拉力值影響 37
 4-2-2 電漿對鋁墊微接點之拉力值影響 45
 4-2-3 電漿對鉑墊微接點之拉力值影響 52
第五章 結論 58
參考文獻 60
參考文獻 References
[1] 「微機電系統技術與應用」,行政院國家科學委員會精密儀器發展中心出版,2003年。
[2] R. R. Tummala, “Fundamentals of Microsystems Packaging,” McGraw-Hill, Inc. 2005.
[3] C. Lee, T. C. E. Rachel, O. W. L. Jenny “Plasma Cleaning for Plastic Ball Grid Array (PBGA) : A Study on Surface Cleanliness, Wire Bondability and Adhesion,” Proceedings of 6th IPFA ’97, Singapore., pp.50 - 55.
[4] L. Wood, C. Fairfield, K. Wang, “Plasma Cleaning of Chip Scale Packages for Improvement of Wire Bond Strength,” Electronic Materials and Packaging, 2000. (EMAP 2000). International Symposium on., pp.406 - 408.
[5] Y. H. Chan, J. K. Kim, D. Liu, P. C. K. Liu, Y. M. Cheung, M. W. Ng, “Improvements in Au Wire Bondability of Rigid and Flexible Substrates using Plasma Cleaning,” IEEE. 2005 6th International Conference on Electronic Packaging Technology., pp.366 - 371.
[6] J. M. Nowful, S. C. Lok, “Effects of plasma cleaning on the reliability of wire bonding,” Int. Sym. Electron. Mater. Packag., pp.39 - 43, 2001.
[7] Y. M. Cheung, S. W. Or, S. Ching, “Low temperaturegold wire bonding,” Int. Electron. Manufac. Tech. Sym., pp.196-202, 1999.
[8] F. Fazlin, “Plasma Treatment for Improved Wire Bonding,” Solid State Technology., pp.117 - 120, 1996
[9] R. D. Rust, D. A. Doane, I. Sawchyn, “Improvements in Wire Bonding and Solderability of Surface Mount Components Using Plasma Cleaning Techniques,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology., Vo1. 14, No. 3, pp.573 - 579, 1991.
[10] Y. H. Chan, J. K. Kim, D. M. Liu, P. C. K. Liu, Y. M. Cheung, M. W. Ng, “Effect of plasma treatment of Au-Ni-Cu bond pads on process windows of Au wire bonding,” IEEE Transactions on Advanced Packaging., Vol. 28, No. 4, pp.674 - 684, 2005.
[11] J. K. Kim, B. P. L. Au, “Effects of metallization characteristics on gold wire bondability of organic printed circuit boards,” J. Electron. Mater., Vol. 30, pp.1001 - 1011, 2001.
[12] Y. H. Chan, J. K. Kim, D. M. Liu, P. C. K. Liu, Y. M. Cheung, M. W. Ng, “Process windows for low temperature Au wire bonding,” J. Electron. Mater., Vol. 33, pp.146 - 155, 2004.
[13] R. Hagen, J. Ramm, T. Zeiler, B. Coller, “Reliable BGA assembly using plasma chemical cleaning,” in Proc. IEEE/CPMT Electron. Packag. Tech. Conf., pp.41 - 45, 1997.
[14] V. L. von Arnim, J. Fessmann, L. Psotta, “Plasma treatment of thin gold surfaces for wire bond applications,” Surf. Coat. Tech., Vol. 116 - 119, pp.517 - 523, 1999.
[15] G. G. Harman, C. A. Cannlon, "The Microelectronic Wire Bond Pull Test, How To Use It, How To Abuse It", IEEE Transactions on Components, Hybrids, and Manufacturing Technology, CHMT-1, pp.203 - 210, 1978.
[16] T. Liston, Branson/IPC, Hayward, CA, “Plasma Cleaning and Surface Treatment of Hybrids to Improve Bonding”, Circuit Expo ‘86 Proceeedings, pp.41 - 43.
[17] H. Bonham, P. Plunkett, R. International, Richardson, TX, "Plasma Cleaning for Improved Wirebonding on Thin-Film Hybrids," Electronic Packaging and Production, pp.42 - 55, 1979.
[18] G. G. Harman, “Wire Bonding in Microelectronics Materials, Processes, Reliability AND Yield,” 2nd edition, McGraw-Hill, New York, 1997.
[19] G. G. Harman, J. Albers, “The ultrasonic welding mechanism as applied to aluminum and gold wire bonding in microelectronics,” IEEE Trans. Parts, Hybrids, Packaging, Vol. PHP-13, pp.406, 1977.
[20] G. G. Harman, “A metallurgical basis for the non-destructive wire-bond pull test,” in 12th Ann. Proc. IEEE Reliability Physics, pp.205 - 210, 1974.
[21] K. I. Johnson, M. H. Scott, D. A. Edson, “Ultrasonic wire welding, part II-ball-wedge wire welding,” Solid State Technol., Vol. 20, pp.91, 1977.
[22] T. H. Ramsey, “Metallurgical behavior of gold wire in thermal compression bonding,” Solid State Technol., Vol. 16, pp.43, 1973.
[23] B. L. Gehman, “Gold wire for automated bonding.” Solid State Technol.. Vol. 23, 1980.
[24] E. Philofsky, “Design limits when using gold-aluminum bonds,” in 9th Ann. Proc. IEEE Reliability Physics, pp.fl-16, 1971.
[25] G. G. Harman, “Metallurgical failure modes of wire bonds,” in 12th Ann. Proc. IEEE Reliability Physics, pp.13 I - 141, 1974.
[26] 福田義孝,「電子構裝技術」,普林斯頓國際出版,2005年。
[27] 田民波,「半導體電子元件構裝技術」,五南圖書出版,2005年。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.128.199.162
論文開放下載的時間是 校外不公開

Your IP address is 3.128.199.162
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code