Responsive image
博碩士論文 etd-0910109-152908 詳細資訊
Title page for etd-0910109-152908
論文名稱
Title
高屏峽谷內潮受地形及分層效應之數值模擬
Numerical simulation of topography and stratification effects to the internal tide in Gaoping Submarine Canyon
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-08-21
繳交日期
Date of Submission
2009-09-10
關鍵字
Keywords
高屏峽谷、海底峽谷、內潮、模式、數值模擬
submarine canyon, numerical simulation, model, POM, Kaoping, Gaoping, internal tide
統計
Statistics
本論文已被瀏覽 5690 次,被下載 1897
The thesis/dissertation has been browsed 5690 times, has been downloaded 1897 times.
中文摘要
本研究使用數值模式POM(Princeton Ocean Model)模式模擬高屏峽谷的內潮波動行為,模式設定含不同地形(平坦、斜坡、真實峽谷地形)及水體分層與否來討論地形與分層效應對流場的變化;模擬時間共十天(間隔時間1 小時),四周均設定輻射邊界,西邊以全球潮位模式TPXO 6.2 取得半日潮(M2)與混合潮(M2+K1)水位作為驅動力。模擬測試結果顯示分層及峽谷地形為內潮產生之必要條件,內潮在高屏峽谷產生時,表層較底層有3~5 小時延遲且底層流速較表層強,此結果與實測結果印證良好。模擬平坦地形及斜坡地形均無上下層流速延遲現象。實際高屏峽谷地形模擬之設定水平解析度為500 公尺,垂直分41 層,結果顯示內潮沿峽谷主軸波動,介面深度約在100~200 公尺。計算結果之斜壓能量(Energy Flux)顯示高屏峽谷內潮產生位置約在峽谷口附近,峽谷邊緣陸棚、海脊處,內潮產生後沿著峽谷往岸邊傳輸,能量隨距離增加而遞減。
Abstract
It is generally understood that tidal currents ominated the flow field in many submarine canyons, and internal tide may be an order of magnitude more energetic than that of barotropic. The internal tide can be generated and amplified in a marine environment with the strong vertical density interface. The barotropic tides were known to play the dominant
role in driving the internal tides at the topographic relief or shelf break.This research tries to look at the mechanisms of internal tides generation and propagation in the Kaoping Submarine Canyon off southwestern Taiwan, using Princeton Ocean Model (POM) with different settings. The model was tested with bottom topography of flat, a slope and real water
depth, with and without vertical stratifications. The model settings are grid size 500m, simulate period days, radiation boundary condition at 4 sides. The model forcings are sea level variations at the west side, both semidiurnal tide (M2) and mixed tide (M2+K1) based on OSU tidal model TPXO 6.2. The results suggest that the offshore M2 tidal forcing
can generate large internal tidal currents within the canyon with vertical density stratification. The internal tidal currents at the upper-layer of the canyon lag that of lower-layer 3~5 hours. There is no time lag and no
amplification of current in the canyon if there is no stratification. There is a transition zone of minimum flow at depth of about 100-200m. Below the interface, the amplitude of semidiurnal internal tidal current increased with water depth in the canyon. The simulated density contours suggest a 120m amplitude vertical fluctuation center at 150m depth, with 5℃ temperature fluctuation. The computed baroclinic energy flux indicates that the energy in lower layer of the canyon is stronger than that of upper
layer. The high energy flux appears at the canyon foot and rim, and propagates along the canyon axis landward.
目次 Table of Contents
章次 頁次
謝誌..................................................................................... i
摘要..................................................................................... ii
Abstract.............................................................................. iii
目 錄.....................................................................................v
圖目錄................................................................................. vii
表目錄................................................................................. ix
第一章、 緒論.....................................................................1
1-1 高屏峽谷簡介...............................................................1
1-2 內潮文獻回顧...............................................................5
1-3 研究目的.......................................................................9
第二章、 數值模式............................................................10
2-1 模式介紹......................................................................10
2-2 模式設定......................................................................13
2-2.1 水深地形分類...........................................................13
2-2.2 邊界條件設定...........................................................14
2-3 模式驗證......................................................................18
第三章、結果與討論.........................................................20
3-1 地形與分層之影響......................................................20
3-2 平面流場分析..............................................................26
3-3 垂直剖面分析..............................................................29
3-4 斜壓能量通量(energy flux) .......................................34
第四章、 結論與建議........................................................39
4-1 結論..............................................................................39
4-2 建議..............................................................................40
參考文獻.............................................................................41
附件一、POM 模式介紹...................................................44
參考文獻 References
張育嘉,2001。高屏峽谷及附近海域之流場觀測,國立中山大學海洋資源研究所碩士論文,共91 頁。
吳孟麟,2004。高屏海底峽谷與陸棚流場之研究,國立中山大學海洋地質及化學研究所碩士論文,共119 頁。
林意淳,2004。POM 模式應用於河口水動力計算之研究,國立成功大學水利及海洋工程研究所碩士論文,共80 頁。
林育如,2006。高屏峽谷水團運動受地形水深影響,國立中山大學海洋物理研究所碩士論文,共85 頁。
王君豪,2007。高屏溪口流場三維結構的觀測分析,國立中山大學海洋物理研究所碩士論文,共73 頁。
吳瑞中,2007。潮汐引致呂宋海峽內波之數值模擬研究,國立中山大學海洋物理研究所碩士論文,共71 頁。
丁錡樺,2008。呂宋海峽內潮及其強化生地化通量之數值研究,國立中央大學水文與海洋科學研究所碩士論文,共125 頁。
林聖欽,2009。以聲學回波強度及水文資料探討高屏峽谷水團受內潮運動之影響,國立中山大學海洋物理研究所碩士論文,共98 頁。
Chow, J., J. S. Lee, C. S. Liu, B. D. Lee, and J. S. Watkins, 2001. A submarine canyon as the cause of a mud volcano-Liuchieuyu Island in Taiwan. Marine geology, 176, 55-63.
Garrett, C., 2003. Internal Tides and Ocean Mixing. Ocean Science,42,301(5641), 1858–1859.
Jachec, S.M.,O.B. Fringer,M.G. Gerritsen, and R.L. Street, 2006, Numerical simulation of internal tides and the resulting energeticswithin Monterey Bay and the surrounding area. Geophysical Research Letters, 33, L12605,doi:10.1029/2006GL026314,
Kunze, E., L. K. Rosenfeld, G. Carter, and M. C. Gregg , 2002, Internal waves in Monterey Submarine Canyon, Journal of Phyical Oceanography, 32, 1890–1913.
García Lafuente, J., T. Sarhan, M. Vargas, J.M. Vargas and F. Plaza, 1999. Tidal motions and tidally induced fluxes through La Linea submarine canyon, western Alboran Sea. Journal of Geophysical Research, 104, C2, 3109-3119.
Lee, I. H., R. C. Lien, J. T. Liu, and W. S. Chuang, 2009. Turbulent mixing and internal tides in Gaoping (Kaoping) Submarine Canyon,Taiwan. Journal of Marine Systems, 76, 383-396,doi:10.1016/j.jmarsys.2007.08.005.
Lee, I. H., Y. H. Wang, J. T. Liu, W. S. Chuang, and J. Xu, 2009. Internal Tidal Currents in the Gaoping(Kaoping)Submarine Canyon. Journal of Marine Systems, 76, 397-404,doi:10.1016/j.jmarsys.2007.12.011.
Liu, C. S., S.Y. Liu, S.E. Lallemand, N. Lundberg , and D. Reed, 1998, Digital Elevation Model Offshore Taiwan and Its Tectonic Implications. TAO, 9(4), 705-738.
Liu, J. T., and H. L. Lin, 2004. Sediment dynamics in a submarine canyon:a case of river–sea interaction. Marine Geology, 207, 55-81.
Liu, J. T., J. J. Hung, H. L. Lin, C. A. Huh, C. L. Lee, R. T. Hsu, Y. W. Huang, and J. C. Chu, 2009. From suspended particles to strata: The fate of terrestrial substances in the Gaoping (Kaoping) submarine
canyon. Journal of Marine Systems, 76, 417-432,
doi:10.1016/j.jmarsys.2007.11.0.13.
Merrifield, M. A. and P. E. Holloway, 2002, Model estimates of M2 internal tide energetics at the Hawaiian Ridge, Journal of Geophysical, 107(C8), doi: 10.1029/2001JC000996.
Munroe, J. R. and K. G. Lamb, 2005. Topographic amplitude dependence of internal wave generation by tidal forcing over idealized three-dimensional topography. Journal of Geophysical Research,
110(c2), 1-14, doi:10.1029/2004JC002537.
43
New, A. L. and R. D. Pingreet , 1990. Evidence for internal tidal mixing near the shelf break in the Bay of Biscay, Deep-Sea Research, 37(12),
1783-1803.
Pereira, A. F., A. L. Belem, B. M. Castro and R. Geremias, 2005. Tide-topography interaction along the eastern Brazilian shelf, Continental Shelf Research, 25, 1521-1539.
Petruncio, E. T., L. K. Rosenfeld, and J. D. Paduan, 1998. Observations of the internal tide in Monterey Canyon. Journal of Physical Oceanography, 28, 1873-1903.
Petruncio E. T., J. D. Paduan, L. K. Rosenfeld, 2002. Numerical simulationof the internal tide in a submarine canyon. Ocean modeling, 4, 221-228.
Simmons, H. L., R. W. Hallberg and B. K. Arbic, 2004. Internal wave generation in a global baroclinic tide model, Deep-Sea Research II, 51, 3043-3068.
Wang, Y. H., I. H. Lee, and J. T. Liu, 2008. Observation of internal tidal currents in the Kaoping Canyon off southwestern Taiwan, Estuarine,Coastal and Shelf Science, 80, 153-160,doi:10.1016/j.ecss.2008.07.016
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code