Responsive image
博碩士論文 etd-0910109-162332 詳細資訊
Title page for etd-0910109-162332
論文名稱
Title
台灣海峽及南海北部二氧化碳變化
Carbon Dioxide Variation in the Taiwan Strait and the Northern South China Sea
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
135
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-30
繳交日期
Date of Submission
2009-09-10
關鍵字
Keywords
台灣海峽、南海、黑潮、聖嬰、反聖嬰
El Niño, La Niña, Kuroshio, South China Sea, Taiwan Strait
統計
Statistics
本論文已被瀏覽 5689 次,被下載 1314
The thesis/dissertation has been browsed 5689 times, has been downloaded 1314 times.
中文摘要
邊緣海對大氣二氧化碳的吸收及釋放的機制複雜,本文以台灣海峽及南海北部分析其影響因子。將fCO2對平均水溫標準化(fCO2 cal.mean),以扣除溫度對fCO2 的影響。2008年春季台灣海峽,實測fCO2mean在鹽度小於約33.8時,兩者關係大致為負相關;鹽度大於約33.8時,為正相關。鹽度小於約33.8時,fCO2 cal. mean對葉綠素略呈現負相關,表示大陸沿岸的fCO2 cal.值除了低溫增加CO2溶解度,還因生物光合作用,使水中溶解態無機碳(NDIC)含量減少,為二氧化碳的匯;鹽度大於約33.8時,fCO2 cal. mean與葉綠素成正相關性,表示光合作用消耗DIC的影響減小,fCO2 cal.的變動主要因素為富NDIC的大陸沿岸流,與低NDIC的海水混合,因海水溫度提高,CO2溶解度降低,使其成為二氧化碳的源。2008年夏季,南海北部受珠江沖淡水影響,使fCO2分佈隨鹽度減少而下降,大陸沿岸除了珠江沖淡水之外,還受九龍江及湧升現象改變fCO2。
台灣海峽水團主要為南海水、黑潮水及大陸沿岸流。聖嬰現象發生時,黑潮水因季風減弱,進入南海的水量增加,反聖嬰時期,因季風增強,使黑潮水水量減少,與南海水混合後北上,台灣海峽因而有年際變化。將台灣海峽南部區分為澎湖水道及海峽西部討論,澎湖水道水文在聖嬰夏季期間,呈現高溫、高鹽、高pH、低NDIC及低營養鹽,反應在聖嬰現象發生時,有較多的黑潮水進入南海,再往北流至台灣海峽。
正常年澎湖水道水文隨季節改變而不同,夏季為低溫、低鹽及低pH,冬季高鹽、高pH、低AOU、低NDIC及低營養鹽,表示夏季黑潮水進入南海量少,冬季較多。正常年澎湖水道水文有明顯的季節性改變,聖嬰時期春、夏、秋三季則沒有明顯的區別,因夏季黑潮水進入南海的流量增加,聖嬰期間夏季季風減弱,水文性質與春、秋期間季風轉向減弱時相近,冬季為最高pH、低AOU、低NDIC及低營養鹽。正常年春、秋兩季海峽西部皆出現由南方湧升後北流的老水訊號,可能是因為季風減弱,使聖嬰期間訊號減小。冬季海峽西部在聖嬰期間比正常時期高溫、高鹽、高pH及低NDIC,表示聖嬰現象在冬季不僅影響澎湖水道,也改變台灣海峽西部。
Abstract
The dynamics of marginal seas is complex in terms of carbon dioxide absorption and release. This thesis analyzes data collected in the southern Taiwan Strait and in the South China Sea. In order to deduct the influence of temperature on the fCO2, fCO2 is normalized to the average water temperature (fCO2 mean). In the spring of 2008, in the Taiwan Strait, when salinity was smaller than approximately 33.8, measured fCO2 mean and salinity had a negative correlation; but when the salinity was higher than approximately 33.8, the correlation was positive. When salinity was smaller than apprx. 33.8, fCO2 cal. mean correlated slightly negatively to chlorophyll. This indicates that the low fCO2 cal. was not only caused by the increase of the CO2 solubility at lower temperatures, but also by the biotic photosynthesis. On the contrary, when the salinity was higher than apprx. 33.8, fCO2 cal. mean and the chlorophyll held positive correlation. It indicates that the influence of photosynthesis was reduced. In this case, the primary factor of fCO2 cal. change was due to the mixing of the high normalized dissolved inorganic carbon (NDIC=35×DIC/S) China Coastal Current with low NDIC seawater. With a raise of seawater temperature, then a decrease of the CO2 solubility, seawater became a source of carbon dioxide. In the summer of 2008, the northern South China Sea was influenced by Pearl River plume, resulting in lower fCO2 and salinity. The fCO2 of the China coast was influenced not only by the Pearl River plume, but also by the Jiulong River plume and upwelling.

The Taiwan Strait water mass mainly contains the South China Sea water, a Kuroshio branch and the China Coast Current. During an El Niño year, the monsoon weakens, so that the volume of Kuroshio entering the South China Sea increases. However, for La Niña years, the monsoon strengthens, therefore the volume of the Kuroshio entering the South China Sea decreases. As a result, the Taiwan Strait water changes interannually due to different mixture of seawater of the Kuroshio and the South China Sea. The southern Taiwan Strait could be divided into the Penghu Channel and the western strait. During an El Niño summer, the Penghu Channel is occupied by waters with high temperature, salinity and pH, but low NDIC and nutrients. This is because more Kuroshio waters enter the South China Sea, then move northward to the southern Taiwan Strait.

The hydrology in the Penghu Channel in normal years shows different result from season to season. In the summer, the Penghu Channel contains low temperature, salinity and pH water. In winter, waters with high salinity and pH, but low AOU, NDIC and nutrients prevail. This indicates that less Kuroshio waters enter the South China Sea in summer than in winter. The hydrology of the Penghu Channel changes decidedly from season to season in a normal year but spring, summer and fall have no clear change in the El Niño period, because more Kuroshio waters enter the South China Sea in summer. The wind effect during the El Niño period becomes weakened, have the hydrology during summer monsoon is similar to the hydrology in spring and summer. The waters of the Penghu Channel reach the highest pH, but the lowest AOU, NDIC and nutrients in winter. Older waters from upwelling move to the north in the western Strait during spring and fall in a normal year. However, during the El Niño period, possibly due to the weaker monsoon, such upwelling signal is reduced. Waters of the western strait in winter have higher temperature, salinity and pH, but lower NDIC during the El Niño period compared to a normal year. This indicates that the El Niño influences not only the Penghu Channel but also the entire southern Taiwan Strait in winter.
目次 Table of Contents
誌謝---------------------------------------------------------------------------------I
摘要--------------------------------------------------------------------------------II
Abstract---------------------------------------------------------------------------IV
目錄------------------------------------------------------------------------------VII
表目錄-----------------------------------------------------------------------------X
圖目錄----------------------------------------------------------------------------XI
第一章 前言---------------------------------------------------------------------1
第二章 研究方法與材料------------------------------------------------------7
2.1 研究材料--------------------------------------------------------------------7
2.2 研究方法-------------------------------------------------------------------15
2.2.1 海水酸鹼值(pH)的測定-------------------------------------------16
2.2.2 海水總鹼度(total alkalinity, TA)的測定------------------------17
2.2.3 海水溶解態無機碳(dissolved inorganic carbon, DIC)的測定------------------19
2.2.4 海水中二氧化碳分壓(fugacity of carbon dioxide, fCO2)、總鹼度(TA)及pH的計算-----19
2.2.5 水下二氧化碳(underway fCO2)的連續實際測定-------------19
2.2.6 表水fCO2變化控制因子------------------------------------------23
2.2.7 海氣交換之碳通量計算-------------------------------------------25
第三章 台灣海峽fCO2空間分佈及控制因子---------------------------26
3.1 地理及水文特性---------------------------------------------------------26
3.1.1 台灣海峽--------------------------------------------------------------26
3.1.2 南海北部--------------------------------------------------------------28
3.2 2008 年春季台灣海峽二氧化碳分佈--------------------------------28
3.3 2008 年夏季南海北部二氧化碳分佈--------------------------------43
第四章 台灣海峽南部聖嬰、反聖嬰及正常時期的水文變化-------50
4.1 南海水與西菲律賓海水比較------------------------------------------50
4.2 聖嬰、正常及反聖嬰現象春季及夏季比較------------------------53
4.2.1 聖嬰、正常及反聖嬰年春季--------------------------------------53
4.2.1.1 春季台灣海峽西部----------------------------------------------55
4.2.1.2 春季澎湖水道----------------------------------------------------55
4.2.2 聖嬰、正常及反聖嬰年夏季--------------------------------------61
4.2.2.1 夏季台灣海峽西部----------------------------------------------61
4.2.2.2 夏季澎湖水道----------------------------------------------------63
4.3 正常期間及聖嬰期間在台灣海峽的季節變化---------------------79
4.3.1 正常期間海峽西部季節變化------------------------------------79
4.3.2 正常期間澎湖水道季節變化------------------------------------81
4.3.3 聖嬰期間海峽西部季節變化-----------------------------------86
4.3.4 聖嬰期間澎湖水道季節變化-----------------------------------87
第五章 結論------------------------------------------------------------------92
第六章 參考文獻------------------------------------------------------------94
附錄 Chen, C. T. A., S. Jan, T. H. Huang and Y. H. Tseng (2009), The
Spring of No Kuroshio Intrusion in the Southern Taiwan Strait, submitted to JGR.----100
表目錄
表2-1 2000 年到2008 年台灣海峽南部航次時間-----------------------8
圖目錄
圖1-1 近10000 年大氣中二氧化碳濃度的變化--------------------------3
圖2-1 2000 年6 月到2008 年8 月台灣海峽南部聖嬰、反聖嬰及正常時期採樣站位圖---9
圖2-2 OR-I 725 採樣站位圖------------------------------------------------10
圖2-3 OR-I 725 溫鹽圖------------------------------------------------------11
圖2-4 OR-I 728 站位圖------------------------------------------------------12
圖2-5 OR-I 861 站位圖------------------------------------------------------13
圖2-6 OR-I 873 站位圖------------------------------------------------------14
圖2-7 Gran titration 滴定終點判定示意圖------------------------------18
圖 3-1 表水溫鹽圖-------------------------------------------------------------29
圖 3-2 溫度(a)、鹽度(b)、sigma-T(c)、AOU(d)、pH(e)及NTAcal.(f)
表水分佈圖-------------------------------------------------------------30
續圖 3-2 NDIC(g)、NO2+NO3(h)、PO4 (i)、SiO2(j)、chl. a(k)及fCO2 cal.(l)
表水分佈圖----------------------------------------------------------31
圖3-3 OR-I 861 underway fCO2分佈航線圖-----------------------------33
圖3-4 OR-I 861 DO、chl a、salinity、theta及underway fCO2時序圖---34
圖3-5 OR-I 861 fCO2(a)及fCO2 at 22.1℃(b)對TAcal./DIC關係圖-36
圖3-6 OR-I 861 salinity<33.8(a)及salinity>33.8(b)的fCO2 at 22.1℃對chl a關係圖---37
圖3-7 OR-I 861 fCO2 at 22.1℃對chl a關係圖--------------------------38
圖3-8 OR-I 861 溫度剖面圖-----------------------------------------------39
圖3-9 OR-I 861 鹽度剖面圖-----------------------------------------------40
圖3-10 OR-I 861 NDIC 剖面圖---------------------------------------------41
圖3-11 OR-I 873 underway fCO2分佈航線圖----------------------------44
圖3-12 OR-I 873 DO、chl a、salinity、theta及underway fCO2時序圖---45
圖3-13 表層海水衛星溫度分布圖------------------------------------------46
圖3-14 南海北部海盆(a)及大陸沿岸區域(b)的fCO2對鹽度關係圖--48
圖3-15 南海北部海盆(a)及大陸沿岸區域(b)的fCO2對溫度關係圖--49
圖 4-1 南海水及西菲律賓海水位溫(a)、鹽度(b)、AOU(c)、pH(d)、NTA(e) 及NDIC(f)對sigma-T關係圖----51
續圖 4-1 南海水及西菲律賓海水硝酸鹽(g)、磷酸鹽(h)、矽酸鹽(i)、fCO2(j)、葉綠素(k)及25℃時fCO2(l)對sigma-T關係圖-----52
圖 4-2 東吉島氣象站沿台灣海峽方向風速-------------------------------54
圖 4-3 台灣海峽西部(a)及澎湖水道(b),聖嬰、正常及反聖嬰現象春季溫鹽圖-----56
圖 4-4 春季台灣海峽西部,聖嬰、正常及反聖嬰海水位溫(a)、鹽度(b)、AOU(c)、pH(d)、NTA(e) 及NDIC(f)對sigma-T 關係圖--------------57
續圖 4-4 春季台灣海峽西部,聖嬰、正常及反聖嬰海水硝酸鹽(g)、
磷酸鹽(h)、矽酸鹽(i)、fCO2(j)、葉綠素(k)及25℃時fCO2(l)對sigma-T關係圖----58
圖 4-5 春季澎湖水道,聖嬰、正常及反聖嬰海水位溫(a)、鹽度(b)、AOU(c)、pH(d)、NTA(e) 及NDIC(f)對sigma-T 關係圖----59
續圖 4-5 春季澎湖水道,聖嬰、正常及反聖嬰海水硝酸鹽(g)、磷酸鹽(h)、矽酸鹽(i)、fCO2(j)、葉綠素(k)及25℃時fCO2(l)對sigma-T關係圖--60
圖 4-6 台灣海峽西部(a)及澎湖水道(b),聖嬰、正常及反聖嬰現象夏季溫鹽圖-----64
圖4-7 夏季台灣海峽西部,聖嬰、正常及反聖嬰海水位溫(a)、鹽度(b)、AOU(c)、pH(d)、NTA(e) 及NDIC(f)對sigma-T 關係圖-----65
續圖4-7 夏季台灣海峽西部,聖嬰、正常及反聖嬰時期海水硝酸鹽(g)、磷酸鹽(h)、矽酸鹽(i)、fCO2(j)、葉綠素(k)及25℃時fCO2(l)對sigma-T關係圖-----66
圖4-8 大陸華南地區2000 ~ 2007 年,5 ~ 9 月總降雨量均值--------67
圖4-9 夏季台灣海峽西部AOU(a) 、NDIC(b)、硝酸鹽(c)、磷酸鹽(d)及矽酸鹽(e)對pH 關係圖-----68
圖4-10 聖嬰(a)~(c)、正常(d)~(f)及反聖嬰(g)時期台灣海峽西部pH 剖面圖-----69
圖4-11 聖嬰(a)~(c)、正常(d)~(f)及反聖嬰(g)時期台灣海峽西部位溫剖面圖-----70
圖4-12 聖嬰(a)~(c)、正常(d)~(f)及反聖嬰(g)時期台灣海峽西部鹽度剖面圖-----71
圖4-13 聖嬰(a)~(c)、正常(d)~(f)及反聖嬰(g)時期台灣海峽西部AOU剖面圖------72
圖4-14 聖嬰(a)~(c)、正常(d)~(e)及反聖嬰(g)事件台灣海峽西部矽酸鹽剖面圖-----73
圖4-15 夏季澎湖水道聖嬰、正常及反聖嬰時期sigma-T 垂直分佈圖------75
圖4-16 夏季澎湖水道,聖嬰、正常及反聖嬰海水位溫(a)、鹽度(b)、AOU(c)、pH(d)、NTA(e) 及NDIC(f)對sigma-T 關係圖-----76
續圖4-16 夏季澎湖水道,聖嬰、正常及反聖嬰時期海水硝酸鹽(g)、磷酸鹽(h)、矽酸鹽(i)、fCO2(j)、葉綠素(k)及25℃時fCO2(l)對sigma-T關係圖---77
圖4-17 夏季澎湖水道AOU(a) 、NDIC(b)、硝酸鹽(c)、磷酸鹽(d)及矽酸鹽(e)對pH 關係圖-----78
圖4-18 正常期間台灣海峽西部位溫(a)、鹽度(b)、AOU(c)、pH(d)、NTA(e)及NDIC(f)對sigma-T 關係圖-----82
續圖4-18 正常期間台灣海峽西部硝酸鹽(g)、磷酸鹽(h)、矽酸鹽(i)、fCO2(j)、葉綠素(k)及25℃時fCO2(l)對sigma-T關係圖----83
圖4-19 正常期間澎湖水道位溫(a)、鹽度(b)、AOU(c)、pH(d)、NTA(e)及NDIC(f)對sigma-T 關係圖------84
續圖4-19 正常期間澎湖水道硝酸鹽(g)、磷酸鹽(h)、矽酸鹽(i)、fCO2(j)、葉綠素(k)及25℃時fCO2(l)對sigma-T關係圖----85
圖4-20 聖嬰期間台灣海峽西部位溫(a)、鹽度(b)、AOU(c)、pH(d)、NTA(e)及NDIC(f)對sigma-T 關係圖-----88
續圖4-20 聖嬰期間台灣海峽西部硝酸鹽(g)、磷酸鹽(h)、矽酸鹽(i)、fCO2(j)、葉綠素(k)及25℃時fCO2(l)對sigma-T關係圖--87
圖4-21 聖嬰期間澎湖水道位溫(a)、鹽度(b)、AOU(c)、pH(d)、NTA(e)及NDIC(f)對sigma-T 關係圖-----90
續圖4-21 聖嬰期間澎湖水道硝酸鹽(g)、磷酸鹽(h)、矽酸鹽(i)、fCO2(j)、葉綠素(k)及25℃時fCO2(l)對sigma-T關係圖----91
參考文獻 References
中文部份:
王樹倫,1997。西北太平洋邊緣海二氧化碳之研究。國立中山大學海洋地質及化學研究所博士論文,226頁。
侯偉萍,2004。南海周遭海域二氧化碳變化之研究。國立中山大學海洋地質及化學研究所碩士論文,112頁。
馮士筰、李鳳岐、李少菁,2003。海洋科學導論。藝軒出版社,504頁。
陳亭&#20227;,2007。聖嬰年間長江沖淡水在台灣海峽之消長及台灣周遭水域之N2O分佈研究。國立中山大學海洋地質及化學研究所碩士論文,172頁。
韓舞鷹,1998。南海海洋化學。科學出版社,289頁。
英文部份:
Chao, S. Y., P. T. Shaw, and S. Y. Wu (1996), Deep water ventilation in the South China Sea, Deep-Sea Research Part I-Oceanographic Research Papers, 43, 445-466.
Chen, C. T. A., S. L. Wang, X. X. Lu, S. R. Zhang, H. K. Lui, H. C. Tseng, B. J. Wang, and H. I. Huang (2008), Hydrogeochemistry and greenhouse gases of the Pearl River, its estuary and beyond, Quaternary International, 186, 79-90.
Chen, C. T. A., W. Zhai, and M. Dai (2008), Riverine input and air-sea CO2 exchanges near the Changjiang (Yangtze River) Estuary: Status quo and implication on possible future changes in metabolic status, Continental Shelf Research, 28, 1476-1482.
Chen, G. T. J., Z. H. Jiang, and M. C. Wu (2003), Spring heavy rain events in Taiwan during warm episodes and the associated large-scale conditions, Monthly Weather Review, 131, 1173-1188.
Chu, T.-Y. (1971), Environmental study of the surrounding waters of Taiwan. Acta Oceanogr, 1, 15-32.
Clayton, T. D. and R. H. Byrne (1993), Spectrophotometric seawater pH measurements - total hydrogen-ion concentration scale calibration of m-cresol purple and at-sea results, Deep-Sea Research Part I-Oceanographic Research Papers, 40, 2115-2129.
Dickson, A. G. and F. J. Millero (1987), A comparison of the equilibrium-constants for the dissociation of carbonic-acid in seawater media, Deep-Sea Research Part I-Oceanographic Research Papers, 34, 1733-1743.
Dickson, A. G., C. L. Sabine, J. R. Christian, and North Pacific Marine Science Organization (2007), Guide to best practices for ocean CO2 measurements. PICES Special Publication 3, 191 pp.
Fan, S., M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takahashi, and P. Tans (1998), A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models, Science, 282, 442-446.
Fanning, K. A. and M. E. Q. Pilson (1973), Spectrophotometric determination of dissolved silica in natural waters, Analytical Chemistry, 45, 136-140.
Frankignoulle, M. and A. V. Borges (2001), European continental shelf as a significant sink for atmospheric carbon dioxide, Global Biogeochem. Cycles, 15, 569-576.
Gong, G. C., K. K. Liu, C. T. Liu and S. C. Pai (1992), The chemical hydrography of the South China Sea west of Luzon and a comparison with the west Philippine Sea, Terrestrial Atmospheric and Oceanic Sciences, 3, 587-602.
Gran, G. (1952), Determination of the equivalence point in potentiometric titrations, Analyst, 77pp.
Hong, H. S., S. Y. Qiu, W. Q. Ruan, and G. C. Hong (1991), Minnan-Taiwan Bank fishing ground upwelling ecosystem study. In:Hong, H.-S., Qiu, S.-Y., Ruzn, W.-Q., Hong, G.-C. (Edits), Minnam-Taiwan Bank fishing ground upwelling ecosystem study. Science Press, Beijing, 1-10.
Hu, J. Y., H. S. Kawamura, H. S. Hong, M. Suetsuga, and M. S. Lin (2001), Hydrographic and satellite observations of summertime upwelling in the Taiwan Strait: A preliminary description, Terrestrial Atmospheric and Oceanic Sciences, 12, 415-430.
Hu, J., H. Kawamura, H. Hong, and Y. Qi (2000), A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion, Journal of Oceanography, 56, 607-624.
Intergovernmental Panel on Climate Change. (2007), IPCC Fourth Assessment Report Climate Change 2007, Intergovernmental Panel on Climate Change, Geneva.
Intergovernmental Panel on Climate Change, World Meteorological Organization, and United Nations Environment Programme (2001), Climate Change 2001 IPCC Third Assessment Report, IPCC Secretariat, Geneva.
Jan, S. and S. Y. Chao (2003), Seasonal variation of volume transport in the major inflow region of the Taiwan Strait: The Penghu Channel Deep Sea Research II, 50, 6-7, 1117-1126
Jan, S., D. D. Sheu, and H. M. Kuo (2006), Water mass and throughflow transport variability in the Taiwan Strait, Journal of Geophysical Research-Oceans, 111, C12012, doi:10.1029/2006JC003656.
Jan, S., C. S. Chern and J. Wang (1994), A numerical study on currents in Taiwan Strait during summertime. La mer, 32, 225-234
Jan, S., J. Wang, C. S. Chern, and S. Y. Chao (2002), Seasonal variation of the circulation in the Taiwan Strait, J. Mar. Syst., 35, 249-268.
Kim, Y. Y., T. D. Qu, T. Jensen, T. Miyama, H. Mitsudera, H. W. Kang, and A. Ishida (2004), Seasonal and interannual variations of the North Equatorial Current bifurcation in a high-resolution OGCM, Journal of Geophysical Research-Oceans, 109, C03040, doi:10.1029/ 2003JC002013.
Kuo, N. J. and C. R. Ho (2004), ENSO effect on the sea surface wind and sea surface temperature in the Taiwan Strait, Geophysical Research Letter, 31, L13309, doi:10.1029/2004GL020303.
Levelt Sengers, J. M. H., M. Klein, and J. S. Gallagher (1971), Pressure-volume-temperature relationships of gases: virial coefficients, Heat Division, U. S. National Bureau of Standards. AEDC TR-71-39.
Lewis, E. and D.W.R. Wallace (1998), Program developed for CO2 system calculations, Carbon Dioxide Information Analysis Center. Report ORNL/CDIAC-105, Oak Ridge National Laboratory, Oak Ridge, Tenn., U.S.
Liang, W. D., T. Y. Tang, Y. J. Yang, M. T. Ko, and W. S. Chuang (2003), Upper-ocean currents around Taiwan, Deep-Sea Research Part II-Topical Studies in Oceanography, 50, 1085-1105.
Liu, C. S., S. Y. Liu, S. E. Lallemand, N. Lundberg, and D. L. Reed (1998), Digital elevation model offshore Taiwan and its tectonic implications, Terrestrial Atmospheric and Oceanic Sciences, 9, 705-738.
Liu, K. K., S. Y. Chao, P. T. Shaw, G. C. Gong, C. C. Chen, and T. Y. Tang (2002), Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study, Deep-Sea Research Part I-Oceanographic Research Papers, 49, 1387-1412.
Masumoto, A. and N. Yamamoto (1991), Sequestration of a hepatocyte growth-factor in extracellular-matrix in normal adult-rat liver, Biochemical and Biophysical Research Communications, 174, 90-95.
McPhaden, M. J. (1999), El Nino - The child prodigy of 1997-98, Nature, 398, 559.
Mehrbach, C., C. H. Culberso, J. E. Hawley and R. M. Pytkowic (1973), Measurement of apparent dissociation-constants of carbonic-acid in seawater at atmospheric-pressure, Limnology and Oceanography, 18, 897-907.
Millero, F. J. (1974), Seawater as a Multicomponent Electrolyte Solution, In The Sea vol. 5, Wiley, New York, 78pp.
Millero, F. J. and A. Poisson (1981), International one-atmosphere equation of state of seawater, Deep-Sea Research Part a-Oceanographic Research Papers, 28, 625-629.
Pai, S. C., G. C. Gong, and K. K. Liu (1993), Determination of dissolved-oxygen in seawater by direct spectrophotometry of total iodine, Marine Chemistry, 41, 343-351.
Pai, S. C., C. C. Yang, and J. P. Riley (1990), Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex, Analytica Chimica Acta, 229, 115-120.
Pai, S. C., C. C. Yang, and J. P. Riley (1990), Formation kinetics of the pink azo dye in the determination of nitrite in natural-waters, Analytica Chimica Acta, 232, 345-349.
Qu, T., H. Mitsudera, and T. Yamagata (2000), Intrusion of the North Pacific waters into the South China Sea, Journal of Geophysical Research-Oceans, 105, 6415-6424.
Qu, T. D., Y. Y. Kim, M. Yaremchuk, T. Tozuka, A. Ishida, and T. Yamagata (2004), Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea?, Journal Climate, 17, 3644-3657.
Sarmiento, J. and N. Gruber (2006), The ocean carbon cycle, in Ocean Biogeochemical Dynamics. pp. 318-358, Princeton University Press, Princeton, N. J.
Schimel, D. S. (1995), Terrestrial ecosystems and the carbon-cycle, Global Change Biology, 1, 77-91.
Shang, S., C. Zhang, H. Hong, Q. Liu, G. T. F. Wong, C. Hu, and B. Huang (2005), Hydrographic and biological changes in the Taiwan Strait during the 1997-1998 El Nino winter, Geophysical Research Letter, 32, L11601, doi:10.1029/2005GL022578.
Shaw, P. T. and S. Y. Chao (1994), Surface circulation in the South China Sea, Deep-Sea Research Part I-Oceanographic Research Papers, 41, 1663-1683.
Siegenthaler, U. and J. L. Sarmiento (1993), Atmospheric carbon-dioxide and the ocean, Nature, 365, 119-125.
Strickland, J. D. H. and T. R. Parsons (1972), A Practical Handbook of Seawater Analysis, Fisheries Research Board of Canada, Ottawa, 167pp.
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tillbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J. and Y. Nojiri (2002). Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects, Deep-Sea Research II, 49, 1601-1622.
Tang, D. L., H. Kawamura, and L. Guan (2004), Long-time observation of annual variation of Taiwan Strait upwelling in summer season, Monitoring of Changes Related to Natural and Manmade Hazards Using Space Technology, 33(3), 307-312.
Tang, D. L., D. R. Kester, I. H. Ni, H. Kawamura, and H. S. Hong (2002), Upwelling in the Taiwan Strait during the summer monsoon detected by satellite and shipboard measurements, Remote Sensing of Environment, 83, 457-471.
Tozuka, T., T. Kagimoto, Y. Masumoto, and T. Yamagata (2002), Simulated multiscale variations in the western tropical Pacific: The Mindanao Dome revisited, Journal of Physical Oceanography, 32, 1338-1359.
Wagner, W. and A. Pruss (2002), The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, Journal of Physical and Chemical Reference Data, 31, 387-535.
Webster, P. J. and T. N. Palmer (1997), The past and the future of El Nino, Nature, 390, 562-564.
Wei, G. F., D. L. Tang and S. F. Wang (2008), Distribution of chlorophyll and harmful algal blooms (HABs): A review on space based studies in the coastal environments of Chinese marginal seas, Advances in Space Research, 41(1), 12-19.
Weiss (1974), Carbon dioxide in water and seawater: The solubility of a non-ideal gas, Marine Chemistry, 2, 203-215.
Wu, C. R., S. Y. Chao, and C. Hsu (2007), Transient, seasonal and interannual variability of the Taiwan Strait current, Journal of Oceanography, 63, 821-833.
Yaremchuk, M. and T. D. Qu (2004), Seasonal variability of the large-scale currents near the coast of the Philippines, Journal of Physical Oceanography, 34, 844-855.
Zhai, W. D., M. H. Dai, W. J. Cai, Y. C. Wang, and H. S. Hong (2005), The partial pressure of carbon dioxide and air-sea fluxes in the northern South China Sea in spring, summer and autumn, Marine Chemistry, 96, 87-97.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code