Responsive image
博碩士論文 etd-0910110-091951 詳細資訊
Title page for etd-0910110-091951
論文名稱
Title
摩擦攪拌焊接過程熱傳與材料流動之數值研究
Numerical Study of Heat Transfer and Material Flow during the Friction Stir Welding Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-22
繳交日期
Date of Submission
2010-09-10
關鍵字
Keywords
摩擦攪拌焊接、熱傳、材料流動、圓柱座標
material flow, heat transfer, friction stir welding, cylindrical coordinate
統計
Statistics
本論文已被瀏覽 5598 次,被下載 0
The thesis/dissertation has been browsed 5598 times, has been downloaded 0 times.
中文摘要
本研究以圓柱座標為基礎,使用能量守衡方程式並將焊接工具視為移動熱源建立穩態摩擦攪拌焊接製程三維熱傳模型,再使用簡化的動量守衡方程式建立摩擦攪拌焊接之材料流動模型。同時考慮熱傳與材料流動的效應,這個數值模型成功的預測出摩擦攪拌焊接製程的溫度分布與材料流動。
數值結果顯示,提高焊接速度或是進給速度將使工件內部溫度降低,而提高焊接工具轉速則反之提高工件溫度。在進給過程中,焊接工具後方的材料溫度較前方材料溫度高。再者,焊接工具攪拌造成的材料流動使得前進側與後退側的溫度分布不對稱,而此溫度不對稱之差異程度乃視焊接工具軸間部下方的材料流動速度而定。
Abstract
In this study, the energy conservation equation in a cylindrical coordinate system and the moving heat source from the tool are used to establish a steady-state three-dimensional heat transfer model for the friction stir welding (FSW). Then, the simplified momentum conservation equation is employed to predict the material flow model for the FSW. Combining the effects of heat transfer and material flow, this numerical model successfully predicts the weld temperature field and the material flow for the FSW.
Numerical results show that increasing the welding or translational speed of the tool has the effect of decreasing the magnitude of the temperature within the workpiece, while increasing the rotating speed has the opposite effect. During the feeding process, the material located on the back of the tool pin has higher temperature than that on the front. Moreover, the temperature profile are asymmetrical between the advancing and retreating sides due to the material flow stirred by the tool, and this temperature difference depends on the speed of material flow under the tool shoulder.
目次 Table of Contents
封面..........................................................i
學位論文審定書...............................................ii
謝誌........................................................iii
總目錄.......................................................iv
圖目錄.......................................................vi
表目錄.....................................................viii
符號說明.....................................................ix
摘要.........................................................xi
英文摘要....................................................xii
第一章 緒論.................................................1
1.1 摩擦攪拌焊接概述......................................1
1.2 文獻回顧..............................................2
1.3 研究目的與方法........................................5
1.4 論文架構..............................................6
第二章 理論模型............................................8
2.1 三維模型..............................................8
2.2 邊界條件..............................................8
2.3 熱傳模型..............................................9
2.4 材料流動模型.........................................11
2.4.1 不可壓縮非黏性流體模型.........................11
2.4.2 不可壓縮黏性流體模型...........................12
2.5 有限差分數值方法.....................................15
第三章 結果與討論.........................................23
3.1 移動熱源對溫度的影響.................................23
3.2 焊接工具產生的材料流動對溫度的影響...................24
3.3 移動熱源等效材料流動.................................25
3.4 黏度模型與材料流動模型...............................27
3.5 材料流動的邊界值設定.................................30
第四章 結論................................................51
4.1 結論.................................................51
4.2 未來展望.............................................52
參考文獻....................................................53
參考文獻 References
[1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P.Templesmith, and C.J. Dawes;International patent aplication no. PCT/GB92/0223 and GB paent aplication no. 9125978.9 (1991)
[2] R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia; Recent advances in friction sir welding Process, weldment structure and properties, Progress in Materials Science 53 (2008) 980-1023
[3] J.E. Gould, Z. Feng; Heat Flow Model for Friction Stir Welding of Aluminum Alloys, Journal of Materials Processing & Manufacturing Science,Vol.7 (1998),185-194
[4] Ø. FRIGAARD, Ø. GRONG, and O.T. MIDLING; A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys, Metallurgical and Materials Transactions A, Vol.32A (2001),1189-1200
[5] H. Schmidt, J. Hattel and J. Wert; An analytical model for the heat generation in friction stir welding, Modeling Simul. Mater. Sci. Eng. 12 (2004) 143–157
[6] K. Colligan; Material Flow Behavior during Friction Stir Welding of Aluminum, Welding Journal, Welding Research Supplement, (July 1999), 229-s – 237-s
[7] A. P. Reynolds; Visualisation of material flow in autogenous friction stir welds, Science and Technology of Welding and Joining Vol.5 No.2 (2000) 120-124
[8] H. N. B. Schmidt, T. L. Dickerson, and J. H. Hattel; Material flow in butt friction stir welds in AA2024-T3. Acta Materialia, 54 (2006) 1199–1209
[9] M. Song, and R. Kovacevic; Numerical and experimental study of the heat transfer process in friction stir welding, Proc. Instn Mech. Engrs Vol. 217 Part B: J. Engineering Manufacture,(2003),73-85
[10] M. Song, and R. Kovacevic; Thermal modeling of friction stir welding in a moving coordinate system and its validation, International Journal of Machine Tools & Manufacture 43 (2003) 605-615
[11] M. Song, and R. Kovacevic; Heat transfer modeling for both work piece and tool in the friction stir welding process: a coupled model, Proc. Instn Mech. Engrs Vol. 218 Part B: J. Engineering Manufacture,(2004),17-33
[12] P. Heurtier, M. J. Jones, C. Desrayaud, J. H. Driver, F. Montheillet, and D. Allehaux; Mechanical and thermal modelling of Friction Stir Welding, Jorunal of Materials Processing Technology 171 (2006) 348-357
[13] R.NANDAN, G.G.ROY, and T. DEBROY; Numerical Simulation of Three Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding, Metallurgical and Materials Transactions A, Vol. 37A, (2006) 1247-1259
[14] R.NANDAN, G.G.ROY, T.J. Lienert, and T. DEBROY; Three-dimensional heat and material flow during friction stir of mild steel, Acta Materialia 55 (2007) 883-895
[15] R. NANDAN, B. PRABU, A. DE, AND T.DEBROY; Improving Reliability of Heat Transfer and Materials Flow Calculations during Friction Stir Welding of Dissimilar Aluminum Alloys, Welding Journal, Vol.86, (2007), 313-s - 322-s
[16] G. Buffa, J. Huaa, R. Shivpuri, and L. Fratini; Design of the friction stir welding tool using the continuum based FEM model, Materials Science and Engineering A 419 (2006) 381–388
[17] P. A. Colegrove and H. R. Shercliff; 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile, Journal of Materials Processing Technology 169 (2005) 320–327
[18] H. Atharifar, D. Lin, and R. Kovacevic; Numerical and Experimental Investigations on the Loads Carried by the Tool During Friction Stir Welding, Journal of Materials Engineering and Performance Vol.18 (2009) 339s-350s
[19] M. M. Khonsari and E. Richard Booser; APLLIED TRIBOLOGY, JOHN WILEY & SONS,Inc. (2001)
[20] W. Tang, X. Guo, J. C. McLURE, and L. E. Murr; Heat Input and Temperature Distribution in Friction Stir Welding, Journal of Materials Processing &Manufacturing Science Vol.7 (1998) 163-172
[21] Y. J. Chao, S. Liu, and C. H. Chien; Friction Stir Welding of AL 6061-T6 Thick Plates: Part I–Experimental Analyses of Thermal and Mechanical Phenomena, Journal of the Chinese Institute of Engineers Vol.31 No.5 (2008) 757-767
[22] Mikell P. Groover, FUNDAMENTALS OF MODERN MANUFACTURING-Materials, Processes, and Systems, JOHN WILEY & SONS,Inc. (2007)
[23] O. Lawaczeck and H. J. Heinemann; Von Karman vortex streets in the wakes of subsonic and transonic cascades, Paper AGARD Meeting on Unteay Phenomena in Turbumachinery, Monterey, Cal., (1975) 28-1 – 28-13
[24] S.Nakamura, APPLIED NUMERICAL METHODS WITH SOFTWARE, Prentice-Hall, Inc.(1991)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.236.81.4
論文開放下載的時間是 校外不公開

Your IP address is 3.236.81.4
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code