Responsive image
博碩士論文 etd-0910110-135150 詳細資訊
Title page for etd-0910110-135150
論文名稱
Title
低轉速平面發電機研究
Research of planar micro generator at low rotary speed
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-02
繳交日期
Date of Submission
2010-09-10
關鍵字
Keywords
低速、小型發電機、低溫共燒陶瓷技術、銣鐵硼
low speed, small generators, LTCC, NdFeB
統計
Statistics
本論文已被瀏覽 5703 次,被下載 4274
The thesis/dissertation has been browsed 5703 times, has been downloaded 4274 times.
中文摘要
摘要
本文提出了一種自行車專用的低速小型旋轉電磁式發電機,利用有限元素分析設計符合規範要求之發電機雛型,使其在低速下亦有足夠發電效率並且能實際運用於產品之上。模擬上分別在磁石、線圈及軛鐵上各設置了不同的參數,分別是磁石極數、線圈大小、線徑粗細、繞線方式、軛鐵的有無以及軛鐵與磁石間的距離等等,將參數帶入田口法以找出最佳配置。線圈在變動的磁場中因磁通量變化而感應產生電動勢,基於電磁感應原理電磁式發電機可以感應發電。在本研究中,經由線圈與磁石產生相對運動而得到發電量;製作方面創新使用低溫共燒陶瓷技術(low temperature co-fire ceramics, LTCC)製作微型線圈,永久磁石則利用燒結銣鐵硼製造所需要的磁石特性,結合技術與模擬,來達到輕量化、微小化、高能量密度的要求。發電機主體大小為50x50x4.5 mm3,磁場由直徑50mm、厚度2mm的28極銣鐵硼磁石提供,而磁石的磁場強度為3.5Tesla;線圈則使用線寬200μm、線距100μm、厚度40μm的銀線繞製而成,共30層22極,外部再加上純鋼軛鐵以提高發電效率。在德規的規範中,經由模擬得知,在轉速為37rpm、74rpm及111rpm時,可以得到0.61、0.97及1.45V的感應電動勢。
Abstract
ABSTRACT
The design and fabrication of a rotating electromagnetic generator of low-speed and small bicycle were presented in this study. In accordance with the standard of generator the finite element analysis was used to design the prototype generator. In the simulation, the different parameters of the magnet, coil and iron yoke were set into the Taguchi method to find the best configuration. The parameters included the magnet poles, coil size, wire thickness, winding way, with or without iron yoke, and the distance between the magnet and yoke. When a permanent magnet is moved relative to a coil, an electromotive force is created. According to the theory of electromagnetic induction, the electricity was generated by the electromagnetic power generator. In this study, power produced by the relative motion between coil and magnet. This project innovatively uses Low-Temperature Co-fired Ceramic(LTCC) technology to fabricate micro-coil, and the required magnetic characteristics of permanent magnet are produced by sintered Nd-Fe-B. The technology and simulation were combined to achieve the requirements of lightweight, compact, high energy density. A prototype of the micro-generator is 50x50x4.5 mm3 in volume size. The 28 poles hard magnet Nd/Fe/B with an outer diameter of 50 mm and a thickness of 2 mm was molded and sintered, and provides the magnetic field of 3.5 Tesla. The coils with a width of 200μm, a pitch 100μm and the thickness of 40μm were fabricated by silver. The coils had 30 layers and 22 poles. A steel yoke can improve the efficiency of power generation. The results of induced electromotive force were 0.61, 0.97 and 1.45V at the rotational speeds of 37rpm, 74rpm and 111rpm respectively in the simulation.
目次 Table of Contents
目錄
摘要 1
ABSTRACT 3
第一章 緒論 5
1-1 研究背景 5
1-2 研究動機及目的 6
1-3 文獻回顧 7
1-4 本文架構 10
第二章 電磁式發電機發電原理 11
2-1 旋轉電磁式發電機理論基礎 11
2-2 感應電壓頻率與線圈轉速之關係 13
第三章 平面旋轉式電磁發電機設計與模擬 14
3-1 平面旋轉式電磁發電機結構設計 14
3-2有限元素工程分析簡介及設定 15
3-3田口法闡述及因子設定 18
第四章 平面低頻小型電磁式發電機之製作 20
4-1 線圈之製作 20
4-2 磁性材料之介紹與製作 22
第五章 結果與討論 25
5-1田口模擬結果 25
5-2 一次一因子模擬分析 26
5-2-1 磁石 27
5-2-2 線圈 27
5-2-3 軛鐵 31
第六章 結論與未來展望 34
6-1 結論 34
6-2 未來展望 35
參考文獻 36

表目錄

表3- 1發電機各部份參數 41
表3- 2轉速設定值 41
表3- 3磁石之物理參數 41
表3- 4銀線圈之物理參數 42
表3- 5軛鐵之物理參數 42
表3-6 田口法各組的因子及水準配置 42
表3-7各項因子的各水準 43
表 5- 1基本模擬探討參數 43
表5-2 各組模擬電壓值及S/N值 43
表5-3各個參數的水準S/N值及其變異係數跟貢獻排序 44
表 5- 4各極線圈搭配各極磁石產生的電壓值(MV) 44
表 5- 5各組磁石與線圈大小差異 44
表 5- 6線圈不同大小發電量比較表 45
表 5- 7單極線圈線徑與感應電動勢之關係 45
表 5- 8有無軛鐵的感應電動勢值 45
表 5- 9軛鐵與磁石間距不同時的感應電動勢值 46
表 5- 10轉速與感應電動勢之關係 46

圖目錄

圖1- 1 鎳氫電池市場趨勢(日本矢野經濟研究所2006年) 47
圖1- 2 鋰電池市場趨勢(日本矢野經濟研究所2006年) 47
圖1- 3 FARADAY DISK (HTTP://WWW.CNA.EDU.TW/~SAS/CCNA/DISC-PHY/OB4.PDF) 48
圖2- 1 基本旋轉式電磁發電機 (A)側視圖 (B) 3D結構圖 48
圖2- 2 磁通量與面積法向量夾角示意圖 49
圖3- 1 SHIMANO 生產的自行車發電機(HTTP://BIKE.SHIMANO.COM) 49
圖3- 2 發電基本體示意圖 50
圖3- 3 網格分割示意圖 50
圖3- 4 (A)正確的時間分割(B)過少的時間分割 51
圖3- 5 結果分析圖及數值運算 52
圖4- 1 (A)螺線管線圈 (B) 平面線圈 52
圖4- 2 繞線式線圈折疊示意圖 53
圖4- 3 LTCC製作流程圖 53
圖4- 4 永磁材料的演進 54
圖4- 5 釹鐵硼燒結磁石製作流程圖 54
圖5-1 各項因子最佳水準示意圖 54
圖5- 2 (A)~(H)分別為28極線圈配上28. 30. 32. 34. 36. 40. 48. 56極磁石 55
圖5- 3 隨磁極數增加產生的感應電動勢趨勢圖 56
圖5- 4 填充率考量下的線圈設計圖 56
圖5- 5 填充率考量的電壓輸出 57
圖5- 6 線圈在磁場中運動產生感應電動勢示意圖 57
圖5- 7 考慮通過磁場的線圈截面積的線圈設計圖 58
圖5- 8 可發電部份線圈截面積考量的電壓輸出 58
圖5- 9 (A)電流磁效應抵銷示意圖 (B)扇形線圈 59
圖5- 10 使用扇形線圈的電壓輸出波形 60
圖5- 11 磁石與線圈的極數相依關係 60
圖5- 12 (A)使用28極線圈,配30極磁石有最大發電量(B) 使用30極線圈,配32極磁石有最大發電量(C) 使用32極線圈,配34極磁石有最大發電量(D) 使用34極線圈,配36極磁石有最大發電量 61
圖5- 13 線圈單極與磁石單極大小的比較(A)少一線寬(B)相同 (C)多一線寬 (D)多兩線寬 62
圖5- 14 不同線圈大小感應電動勢趨勢圖 63
圖5- 15 (A)(B)為與磁石單極大小相等的線圈感應電流產生情形,(C)(D)為比磁石單極多一線寬的線圈感應電流產生情形,(E)(F)則是比磁石單極多兩線寬的線圈感應電流產生情形。 65
圖5- 16 (A)線徑500ΜM (B) 線徑400ΜM (C)線徑300ΜM (D)線徑200 66
圖5- 17 使用不同線徑下的感應電動勢 67
圖5- 18 改變線圈位置觀察軛鐵鍍發電量的影響 67
圖5- 19 有無軛鐵的感應電動勢趨勢圖 68
圖5- 20 (A)軛鐵距離磁石過遠,軛鐵磁化效果不彰 (B)軛鐵距離磁石過近,線圈可放置層數過少 68
圖5- 21 軛鐵與磁石間距不同時,產生的總感應電動勢趨勢圖。 69
圖5- 22 設計後的最佳形式 69
圖5- 23 多層多極堆疊形式 69
參考文獻 References
參考文獻
[1] P. B. Koeneman, I. J. Busch-Vishniac and K. L. Wood, “Feasibility of micro power supplies for MEMS”, Journal of Microelectromechanical System, Vol. 6, No. 4, pp. 355-362, 1997.
[2] K. A. Cook-Chennault, N. Thambi and A. M. Sastry, “Powering MEMS portable devices—a review of non-regenerative andregenerative power supply systems withspecial emphasis on piezoelectric energyharvesting systems” Smart Materials and Structures, vol.17, pp.43-76, 2008.
[3] Tashiro R, Kabei N, Katayama K, Ishizuka Y, Tsuboi F andTsuchiya K , “Development of an electrostatic generator that harnesses the motion of a living body (use of aresonant phenomenon)”, JSME, Vol.43, No.4, pp.916-922, 2000.
[4] L. M. Swallow, J. K. Luo, E. Siores, I. Patel and D. Dodds, “A piezoelectric fibre composite based energy harvesting device for potential wearable applications”, Smart Material and Structures, Vol. 21, No. 2, pp. 91-97, 2008.
[5] P. Muralt, M. Marzencki, B. Belgacem, F. Calame, S. Basrour, “Vibration energy harvesting with PZT micro device”, Procedia Chemistry, Vol. 33, No. 5, pp. 1191-1194, 2009.
[6] Platt S. R, Farritor S, Garvin K and Haider H, “The use of piezoelectric ceramics for electric power generation within orthopedic implants”I, EEE–ASME Trans. Mechatron, Vol.10, No.4, pp.455-461, 2005.
[7] Platt S. R, Farritor S and Haider H, “On low-frequency electric power generation with PZT ceramics”, IEEE–ASME Trans. Mechatron, Vol.10, No.2, pp.240-252, 2005.
[8] Guo-Hua Feng, Jin-Chao Hung, “Development of wide frequency range-operated micromachined piezoelectric generators based on figure-of-merit analysis” , Microsyst Technol, Vol.14, No.3, pp.419-425, 2008.
[9] Jing-Quan Liua, Hua-Bin Fang, Zheng-Yi Xu, Xin-Hui Mao, Xiu-Cheng Shen, Di Chen, Hang Liao, Bing-Chu Cai, “A MEMS-based piezoelectric power generator array for vibrationenergy harvesting”, Microelectronics Journal, Vol.39, No.5, pp.802-806, 2008.
[10] Santosh Kulkarni, Elena Koukharenko, Russell Torah, John Tudor,Steve Beeby, Terence O’Donnell, Saibal Roy, “Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator”, Sensors and Actuators, Vol145-146, pp. 336-342, 2007.
[11] S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O’Donnell, C. R. Saha and S. Roy, “A micro electromagnetic generator forvibration energy harvesting”, Journal of Micromechanics And Micro engineering, pp. 1257-1265, 2007.
[12] Christophe Serre, Alejandro Perez-Rodrguez, Nuria Fondevilla Emile Martincic, Susanna Martı′nez, Joan Ramon Morante ,Josep Montserrat, Jaume Esteve “Design and implementation of mechanical resonatorsfor optimized inertial electromagnetic microgenerators”, Microsyst Technol, Vol. 148, No. 6, pp. 337-342, 2007.
[13] M. El-hami, P. Glynne-Jones, N. M. White, M. Hill, S. Beeby, E. James, A. D. Brown and J. N. Ross, “Design and fabrication of a new vibration-based electromechanical power generator”, Sensor & Actuators, A92, pp. 335-342, 2001.
[14] A. Handea, T.A. Stuart, “A selective equalizer for NiMH batteries”, Journal of Power Sources, pp.327–339, 2004.
[15] J. Boland, Y. H. Chao, Y. Suzuki and Y. C. Tai, “Micro electret power generator”, Proceeding of IEEE, pp. 538-541, 2003.
[16] Denise Crocce Romano Espinosa, Andréa Moura Bernardes, Jorge Alberto Soares Tenório, “An overview on the current processes for the recycling of batteries”, Journal of Power Sources, pp.311–319, 2004.
[17] C.T. Pan, T.T. Wu, “Simulation and fabrication of magnetic rotary microgenerator with multipolar Nd/Fe/B magnet”, Vol.47, pp.2129–2134 , 2007.
[18] Andrew S. Holmes, Member, Guodong Hong, and Keith R. Pullen, “Axial-Flux Permanent Magnet Machines for Micropower Generation” , Journal Of Microelectromechanical Systems”, VOL. 14, NO. 1, pp.54-62, 2005.
[19] Seyed Mohsen Hosseini, Mojtaba Agha Mirsalim, Mehran Mirzaei1, “Design, Prototyping, and Analysis of a Low Cost Axial-Flux CorelessPermanent-Magnet Generator”, Transactions On Magnetics, VOL. 44, pp.75-80, 2008.
[20] F. Herrault1, C.-H. Ji, R.H. Shafer, S.-H. Kim, and M.G. Allen, “Ultraminiaturized milliwatt-scale permanent magnet generators” The 14th International Conference on Solid-State Sensors, Actuators and Microsystems, pp.899-902, 2007.
[21] Hynek Raisigel, Orph′ee Cugat, J′erˆome Delamare, “Permanent magnet planar micro-generators”, Sensors and Actuators, Vol.130-131, pp. 438–444, 2006.
[22] David P. Arnold, Yeun-Ho Joung, Iulica Zana, Jin-Woo Park, Sauparna Das, Jeffrey H. Lang, David Veazie, Mark G. Allen, “High-speed characterization and mechanical modeling of microscale, axial-flux, permanent-magnet generators”, Solid-State Sensors, Vol.1, pp.701-704, 2005.
[23] David K. Cheng, “Fundamentals of Engineering Electromagnetics”, 2006.
[24] 趙博, 張洪亮, “有限元素分析在工程電磁場中的應用” , 2010.
[25] C.T. Pan, T.T. Wu, “Simulation and fabrication of magnetic rotary microgenerator with multipolar Nd/Fe/B magnet”, Vol.47, pp.2129–2134 , 2007.
[26] 洪子聖, 楊立群, “低溫共燒陶瓷嵌入式電感與電容元件之設計與模型化”, 國立中山大學電機工程學系碩士論文, 2002.
[27] 吳松茂, 戴育哲, “玻璃基板之螺旋電感物理模型萃取技術”, 國立高雄大學電機工程學系碩士論文, 2009.
[28] 張文成,”高性能稀土永久磁石之研究與發展”,物理雙月刊,26卷6期,p.570~583,2000.
[29] 佐川真人,”永久磁石-材料科學的應用”,平河工業社,2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code