Responsive image
博碩士論文 etd-0910112-111127 詳細資訊
Title page for etd-0910112-111127
論文名稱
Title
多重輸入多重輸出中繼點與可調式視訊串流傳輸於合作式通訊網路之資源分配
Resource Allocation for MIMO Relay and Scalable H.264/AVC Video Transmission over Cooperative Communication Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-27
繳交日期
Date of Submission
2012-09-10
關鍵字
Keywords
可調式視訊編碼、合作式通訊、多重輸入多重輸出中繼點、資源分配、中繼點選擇
cooperative communication network, scalable video coding, resource allocation, MIMO relay, relay selection
統計
Statistics
本論文已被瀏覽 5712 次,被下載 130
The thesis/dissertation has been browsed 5712 times, has been downloaded 130 times.
中文摘要
本論文提出關於多重輸入多重輸出中繼點以及可調式視訊串流傳輸於合作式通訊之資源分配策略。首先,在多重輸入多重輸出中繼點部分,利用探討多重輸入多重輸出中繼點的接收多樣性及傳輸多樣性,並提出中繼點選擇條件將輸出訊雜比最大化,在這選擇條件下,效能不佳的中繼點將被剃除。實驗結果顯示,在相同的錯誤率下,本論文提出的方法可以有效減少中繼點的使用數。在可調式視訊串流部分,利用探討可調式視訊串流的時間層以及品質層之畫面相依性,根據畫面的優先權,提出視訊封包的分類演算法。將分類後的封包對應合適的中繼點做合作式傳輸。實驗結果顯示,與單純考慮時間層或品質層的分類架構相比,提出之演算法可達到較佳的視訊品質。
Abstract
This thesis proposes resource allocation algorithms for multi-input multi-output (MIMO) relay and Scalable H.264/AVC video transmission over cooperative communication networks. For MIMO relay, we explore the reception diversity with maximal ratio combining (MRC) and transmission diversity with space-time block codes (STBC) respectively. Then, a condition is proposed to maximize the overall output signal-to-noise ratio (SNR). In this condition, the ineffective relays will be excluded in sequence from the cooperation. Simulation results indicate that the effect of bit error rate (BER) through the relay selection is similar to the scheme which applies all relays, but the amounts of used relay decreased. For Scalable H.264/AVC video, by introducing frame significance analysis, the video quality dependency between coding frame and its references is investigated for temporal layers and quality layers. The proposed algorithm allocates the relay and sub-band to each layer based on channel conditions and the priority of classified video packets. Experimental results indicate that the proposed algorithm is superior to the temporal-based allocation and quality-based allocation cooperative schemes.
目次 Table of Contents
中文摘要 i
Abstract ii
Contents iii
List of Figures v
List of Tables vii
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Resource Allocation for MIMO Relay 2
1.3 Resource Allocation for Scalable H.264/AVC Video 5
1.4 Contribution 6
1.5 Organization 7
Chapter 2 Background 8
2.1 Cooperative Communication 8
2.2 Alamouti STBC 11
2.3 Scalable Video Coding 12
Chapter 3 MIMO Relay Selection for Amplify-and-Forward Relay Networks 16
3.1 System Model 16
3.1.1 Relaying with only MRC at the relay 18
3.1.2 Relaying with only STC at the relay 19
3.1.3 Relaying with MRC and STC at the relay 21
3.2 Analysis of Overall Output SNR 23
3.2.1 Analysis of the overall output SNR for only MRC in relay scheme 23
3.2.2 Analysis of the overall output SNR for only STC in relay scheme 26
3.2.3 Analysis of the overall output SNR for MRC and STC in relay scheme 29
3.3 MIMO Relay Selection Scheme with Suboptimal Power Allocation 32
Chapter 4 Resource Allocation for Scalable Video over Cooperative Networks 34
4.1 Frame Significance Analysis 34
4.1.1 Dependency in Temporal Scalability Structure 34
4.1.2 Dependency in Quality Scalability Structure 37
4.1.3 Proposed Packet Classification Algorithm 38
4.1.4 Proposed Transmission System Model 41
4.2 Proposed Transmission Strategy 42
4.1.1 TDMA-based Cooperative Communication 42
4.1.2 OFDMA-based Cooperative Communication 42
Chapter 5 Experimental Results 45
5.1 Resource Allocation for MIMO Relay over Cooperative Networks 45
5.2 Resource Allocation for Scalable Video Streaming over Cooperative Networks 51
5.2.1 TDMA-based Cooperative Communication 51
5.2.2 OFDMA-based Cooperative Communication 56
Chapter 6 Conclusions and Future Works 60
Reference
Curriculum Vitae
參考文獻 References
[1] J. N. Laneman, and G. W. Wornell, “Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks,” IEEE Transactions on Information Theory, vol. 49, pp. 2415-2525, 2003.
[2] J. N. Laneman, D.N.C. Tse and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Transactions on Information Theory, vol. 50, pp. 3062-3080, 2004.
[3] A. Sendonaris, E. Erkip and B. Aazhang, “User cooperation diversity. Part I. System description,” IEEE Transactions on Communications, vol. 51, pp. 1927-1938, 2003.
[4] A. Sendonaris, E. Erkip and B. Aazhang, “User cooperation diversity. Part II. Implementation aspects and performance analysis,” IEEE Transactions on Communications, vol. 51, pp. 1939-1948, 2003.
[5] W. Su, A. K. Sadek, and K. J. R. Liu, “SER performance analysis and optimum power allocation for decode-and-forward cooperation protocol in wireless networks,” in Proceedings of IEEE Wireless Communications and Networking Conference, vol. 2, pp. 984-989, 2005.
[6] K. J. R. Liu, A. K. Sadek, W. Su, and A. Kwasinski, Cooperative Communications and Networking, Cambridge University Press, 2008.
[7] W. Su, A. K. Sadek, and K. J. R. Liu, “Cooperative communication protocols in wireless networks: performance analysis and optimum power allocation,” Wireless Personal Communications, vol. 44, pp. 181-217, January 2008.
[8] A. K. Sadek, W. Su, and K. J. R. Liu, “Multi-node cooperative communications in wireless networks,” IEEE Transactions on Signal Processing, vol. 55, pp. 341-355, January 2007.
[9] A. Stefanov and E. Erkip, “Cooperative information transmission in wireless networks,” in Proceedings of Workshop on Concepts in Information Theory, pp. 90–93, June 2002.
[10] A. Scaglione, D. L. Goeckel, and J. N. Laneman, “Cooperative communications in mobile ad hoc networks,” IEEE Signal Processing Magazine, pp. 18-29, September 2006.
[11] H. Schwarz, and D. Marpe, “Overview of the scalable video coding extension of the H.264/AVC standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, pp. 1103-1120, 2007.
[12] D. Wu, Y.T. Hou, and Y.Q. Zhang, “Scalable video coding and transport over broad-band wireless networks,” in Proceedings of the IEEE, vol. 89, pp. 6-20, 2001.
[13] T. Schierl, T. Stockhammer, and T. Wiegand, “Mobile video transmission using scalable video coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no.9, pp. 1204-1217, 2007.
[14] A. Segall, and G. Sullivan, “Spatial scalability within the H.264/AVC scalable video coding extension,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, pp. 1121-1135, 2007.
[15] C. H. Yeh, K. J. Fan, M. J. Chen, and G. L. Li, “Fast mode decision algorithm for scalable video coding using Bayesian theorem detection and Markov process,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, pp. 563-574, 2010.
[16] T. Schierl, M. R. Civanlar, and O. Shapiro, “Multipoint video conferencing with scalable video coding,” J. Zhejiang Univ. Sci. A, vol. 7, no. 5, pp. 696–705, May 2006.
[17] C. H. Kuo, C. M. Wang and J. L. Lin, “Cooperative Wireless Broadcast for Scalable Video Coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, pp. 816-824, June 2010.
[18] V. Ganwani, B.K. Dey, G.V.V. Sharma, S.N. Merchant and U.B Desai, “Performance analysis of amplify and forward based cooperative diversity in MIMO relay channels,” in Proceedings of 69th IEEE Vehicular Technology Conference, pp. 1-5, 2009.
[19] A.S. Behbahani, R. Merched and A.M. Eltawil, “Optimizations of a MIMO Relay Network,” IEEE Transactions on Signal Processing, vol. 56, pp. 5062-5073, 2008.
[20] S. Yang and J.-C. Belfiore, “Optimal space–time codes for the MIMO amplify-and-forward cooperative channel,” IEEE Transactions on Information Theory, vol. 53, pp. 647-663, 2007.
[21] O. Munoz-Medina, J. Vidal and A. Agustin, “Linear transceiver design in nonregenerative relays with channel state information,” IEEE Transactions on Signal Processing, pp. 2593-2604, 2007.
[22] A. Host-Madsen and J. Zhang, “Capacity bounds and power allocation for wireless relay channels,” IEEE Transactions on Information Theory, pp.2020-2040, 2005.
[23] K.G. Seddik, A.K. Sadek, W. Su and K.J.R. Liu, “Outage analysis and optimal power allocation for multi-node relay networks,” IEEE Signal Processing Letters, vol. 14, no. 6, pp. 377-380, 2007.
[24] Y. Li, B. Vucetic, Z. Zhou, M. Dohler, “Distributed adaptive power allocation for wireless relay networks,” IEEE Transactions on Wireless Communications, vol. 6, no. 3, pp. 948-958, 2007.
[25] M.O. Hasna and M.-S. Alouini, “Optimal power allocation for relayed transmissions over Rayleigh-fading channels,” IEEE Transactions on Wireless Communications, vol. 3, no. 6, pp. 1999-2004, 2004.
[26] H. Schwarz, D. Marpe and T. Wiegand, “Analysis of hierarchical B pictures and MCTF,” in Proceedings of IEEE International Conference on Multimedia and Expo (ICME), pp. 1929-1932, 2006.
[27] T.A. Tsiftsis, G.K. Karagiannidis, S.A. Kotsopoulos and F.-N. Pavlidou, “BER analysis of collaborative dual-hop wireless transmissions,” Electronics Letters, vol. 40, no. 11, pp.679-681, 2004.
[28] J.N. Laneman and G.W. Wornell, “Energy-efficient antenna sharing and relaying for wireless networks,” in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), vol. 1, 7-12, 2000.
[29] D.G. Brennan, “Linear diversity combining techniques,” IEEE Proceedings, vol. 91, no. 2, 2003.
[30] V. Tarokh, N. Seshadri and A.R. Calderbank, “Space-time codes for high data rate wireless communication: performance criterion and code construction,” IEEE Transactions on Information Theory, vol. 44, no. 2, pp. 744-765, 1998.
[31] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill, Inc., 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code